1 | CHRYSOCHOOU M, JOHNSTON C P, DAHAL G. A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valent iron[J]. Journal of Hazardous Materials, 2012, 201(1): 33-42. | 2 | HU J, CHEN G, LO I M. Removal and recovery of Cr() from wastewater by maghemite nanoparticles[J]. Water Research, 2005, 39(18): 4528-4536. | 3 | GREER N P, METAL B. National socialist black metal[J]. Patho Publishing, 2011, 22: 3-8. | 4 | MANDAL S, MAYADEVI S. Cellulose supported layered double hydroxides for the adsorption of fluoride from aqueous solution[J]. Chemosphere, 2008, 72(6): 995-998. | 5 | DAS D P, DAS J, PARIDA K. Physicochemical characterization and adsorption behavior of calcined Zn/Al hydrotalcite-like compound (HTlc) towards removal of fluoride from aqueous solution[J]. Journal of Colloid & Interface Science, 2003, 261(2): 213-220. | 6 | MIN Y. Fluoride removal in a fixed bed packed with granular calcite[J]. Water Research, 1999, 33(16): 3395-3402. | 7 | AMOR Z, BARIOUS B, MAMERI N, et al. Fluoride removal from brackish water by electrodialysis[J]. Desalination, 2001,133(3): 215-223. | 8 | CHEN L S, YUAN T J, NI R, et al. Multivariate optimization of ciprofloxacin removal by polyvinylpyrrolidone stabilized nZVI/Cu bimetallic particles[J]. Chemical Engineering Journal, 2019,365:183-194. | 9 | LI X Q, CAO J, ZHANG W X. Stoichiometry of Cr(Ⅵ) immobilization using nanoscale zerovalent iron (nZVI):?a study with high-resolution X-ray photoelectron spectroscopy (HR-XPS)[J]. Industrial & Engineering Chemistry Research, 2008, 47(7): 2131-2139. | 10 | CAO J, ZHANG W X. Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles[J]. Journal of Hazardous Materials, 2006, 132(2): 213-219. | 11 | LI X Q, ZHANG W X. Iron nanoparticles:?the core-shell structure and unique properties for Ni() sequestration[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2006, 22(10): 4638-4642. | 12 | ZHANG S H, WU M F, TANG T T, et al. Mechanism investigation of anoxic Cr(Ⅵ) removal by nano zero-valent iron based on XPS analysis in time scale[J]. Chemical Engineering Journal, 2018, 335: 945-953. | 13 | 吴云海, 李斌, 冯仕训, 等.活性炭对废水中Cr(Ⅵ)、As(Ⅲ)的吸附[J]. 化工环保, 2010, 30(2): 28-32. | 13 | WU Y H, LI B, FENG S X, et al. Activated carbon adsorption of Cr(Ⅵ) and As() in wastewater[J]. Environmental Protection of Chemical Industry, 2010, 30(2): 28-32. | 14 | PONDER S M, DARAD J G, MALLOUK T E. Remediation of Cr(Ⅵ) and Pb() aqueous solutions using supported, nanoscale zero-valent iron[J]. Environmental Science & Technology, 2000, 34(12):2564-2569. | 15 | CHEN H, LUO H, LAN Y, et al. Removal of tetracycline from aqueous solutions using polyvinylpyrrolidone (PVP-K30) modified nanoscale zero valent iron[J]. Journal of Hazardous Materials, 2011, 192(1): 44-53. | 16 | CHEN Z, WEI D, LI Q, et al. Macroscopic and microscopic investigation of Cr(Ⅵ) immobilization by nano scaled zero-valent iron supported zeolite MCM-41 via batch, visual, XPS and EXAFS techniques[J]. Journal of Cleaner Production, 2018, 181: 745-752. | 17 | XU C, YANG W, LIU W, et al. Performance and mechanism of Cr(Ⅵ) removal by zero-valent iron loaded onto expanded graphite[J]. Journal of Environmental Sciences, 2018, 5: 14-22. | 18 | 甘超.改性生物炭的表征特性及其对Cr(Ⅵ)的吸附性能研究[D].长沙: 湖南大学, 2016. | 18 | GAN C. Study on the characterization of modified biochar and its adsorption performance for Cr(Ⅵ)[D]. Changsha: Hunan University, 2016. | 19 | 王旭峰. 改性玉米芯生物炭对废水中铜和氨氮的吸附[J]. 工业水处理, 2017, 37(1): 37-40, 41. | 19 | WANG X F. Adsorption characters of Cu2+and NH4+-N in wastewater by modified corncob biochar[J]. Industrial Water Treatment, 2017, 37(1): 37-40, 41. | 20 | JIN H, CAPAREDA S, CHANG Z, et al. Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: Adsorption property and its improvement with KOH activation[J]. Bioresource Technology, 2014, 169: 622-629. | 21 | HOSSEINI S M, ATAIE-ASHTIANI B, KHOLIHI M. Nitrate reduction by nano-Fe/Cu particles in packed column[J]. Desalination, 2011, 276(1/2/3): 214-221. | 22 | SOARES O S G P, PEREIRA M F R. Nitrate reduction with hydrogen in the presence of physical mixtures with mono and bimetallic catalysts and ions in solution[J]. Applied Catalysis B: Environmental, 2011,102(3): 424-432. | 23 | ZHANG Z, CISSOKO N, WO J, et al. Factors influencing the dechlorination of 2,4-dichlorophenol by Ni-Fe nanoparticles in the presence of humic acid[J]. Journal of Hazardous Materials, 2009,165(1): 78-86. | 24 | XI Y H, ZOU J T, LUO Y G, et al. Performance and mechanism of arsenic removal in waste acid by combination of CuSO4 and zero-valent iron[J]. Chemical Engineering Journal, 2019, 375. | 25 | 国家环境保护局规划标准处. 水质 六价铬的测定 二苯碳酰二肼分光光度法: GB 7467—1987[S]. 北京: 中国标准出版社, 1987. | 25 | Planning and Standards Division, State Environmental Protection Administration.The reaction of Diphenylcarbonydraide with Cr6+in water: GB 7467—1987[S]. Beijing: Standards Press of China, 1987. | 26 | LV D, ZHOU J S, CAO Z, et al. Mechanism and influence factors of chromium(Ⅵ) removal by sulfide modified nanoscale zerovalent iron[J]. Chemosphere, 2019, 224: 306-315. | 27 | SHI L, DU J, CHEN Z, et al. Functional kaolinite supported Fe/Ni nanoparticles for simultaneous catalytic remediation of mixed contaminants (lead and nitrate) from wastewater[J]. Journal of Colloid & Interface Science, 2014, 428: 302-307. | 28 | BHOWMICK S, CHAKRABORTY S, MONDAL P, et al. Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: kinetics and mechanism[J]. Chemical Engineering Journal, 2014, 243: 14-23. | 29 | WENG X, SUN Q, LIN S, et al. Enhancement of catalytic degradation of amoxicillin in aqueous solution using clay supported bimetallic Fe/Ni nanoparticles[J]. Chemosphere, 2014, 103(5): 80-85. | 30 | FANG Z, QIU X, CHEN J, et al. Debromination of polybrominated diphenyl ethers by Ni/Fe bimetallic nanoparticles: influencing factors, kinetics, and mechanism[J]. Journal of Hazardous Materials, 2011, 185(2): 958-969. | 31 | 郑庆福, 王志民, 陈保国, 等.制备生物炭的结构特征及炭化机理的XRD光谱分析[J].光谱学与光谱分析, 2016, 36(10): 3355-3359. | 31 | ZHENG Q F, WANG Z M, CHEN B G, et al. Analysis of XRD spectral structure and carbonization of the biochar preparation[J]. Spectroscopy and Spectral Analysis, 2016, 36(10): 3355-3359. | 32 | TANG H X, WERNER S. The coagulating behaviors of Fe(III) polymeric species—Ⅰ. Preformed polymers by base addition[J]. Water Research, 1987, 21(1): 115-121. | 33 | MUKHOPADHYAY K, GHOSH A, DAS S K, et al. Synthesis and characterisation of cerium()-incorporated hydrous iron(Ⅲ) oxide as an adsorbent for fluoride removal from water[J]. RSC Advances, 2017, 7(42): 26037-26051. | 34 | 赵颖, 王仁国, 陈沿利, 等.枯草芽孢杆菌对Cu2+的吸附及菌体表面基团分析[J].环境污染与防治, 2011, 33(11): 72-77. | 34 | ZHAO Y, WANG R G, CHEN Y L, et al. Study on adsorption of Cu2+ by bacillus subtilis and quantitative determination of cell surface groups[J]. Environmental Pollution & Control, 2011, 33(11): 72-77. | 35 | LIU W F, ZHANG J, ZHANG C L, et al. Preparation and evaluation of activated carbon-based iron-containing adsorbents for enhanced Cr() removal: mechanism study[J]. Chemical Engineering Journal, 2012, 189/190: 295-302. | 36 | FANG Z Q, QIU X Q, HUANG R X, et al. Removal of chromium in electroplating wastewater by nanoscale zero-valent metal with synergistic effect of reduction and immobilization[J]. Desalination, 2011, 280(1): 224-231. | 37 | LIU T, ZHAO L, SUN D, et al. Entrapment of nanoscale zero-valent iron in chitosan beads for hexavalent chromium removal from wastewater[J]. Journal of Hazardous Materials, 2010, 184(1): 724-730. | 38 | 秦泽敏, 董黎明, 刘平, 等.零价纳米铁吸附去除水中六价铬的研究[J].中国环境科学, 2014, 34(12): 52. | 38 | QIN Z M, DONG L M, LIU P, et al. Removal Cr6+ from water using nanoscale zero-valent iron[J]. China Environmental Science, 2014, 34(12): 52. |
|