1 | BOZAN M, BORAK F, OR I. A computerized and integrated approach for heat exchanger network design in multipurpose batch plants [J]. Chemical Engineering and Processing, 2001, 40(6): 511-524. | 2 | PUIGJANER L. Extended modelling framework for heat and power integration in batch and semi-continuous processes [J]. Chemical Product and Process Modeling, 2007, 2(3): 1-46. | 3 | CHEN Chengliang, CHANG Chiayuan. A resource-task network approach for optimal short-term/periodic scheduling and heat integration in multipurpose batch plants [J]. Applied Thermal Engineering, 2009, 29(5): 1195-1208. | 4 | CLAYTON R W. Cost reductions on an edible oil refinery identified by a process integration study at van den Berghs and Jurgens Ltd [R]. Energy Technology Support Unit (ETSU), UK: Energy Efficiency Office R&D, 1986. | 5 | 李志红, 华贲. 间歇化工过程设计和能量综合优化研究进展[J]. 石油化工设备, 2003, 32(2): 38-41. | 5 | LI Zhihong, HUA Ben. Progress and prospect in energy synthesis and process design for batch chemical processes [J]. Petro-chemical equipment, 2003, 32(2): 38-41. | 6 | OBENG E D A, ASHTON G J. On pinch technology based procedures for the design of batch processes [J]. Chemical Engineering Research & Design, 1988, 66(3): 255-259. | 7 | KEMP I C, MACDONALD E K. Energy and process integration in continuous and batch processes. Innovation in process energy utilization [C]//IChemE. Symposium Series, No.105.Rugby, Warwickshire, UK: Institution of Chemical Engineers, 1987: 185-200. | 8 | CASTRO P M. Improving energy efficiency in batch plants through direct heat integration [M]. Springer International Publishing, 2016. | 9 | KEMP I C. Applications of the time-dependent cascade analysis in process integration [J]. Heat Recovery Systems & CHP, 1990, 10(4): 423-435. | 10 | KEMP I C, DEAKIN A W. The cascade analysis for energy and process integration of batch processes (): calculation of energy targets [J]. Chemical Engineering Research & Design, 1989, 67(5): 495-509. | 11 | KEMP I C, DEAKIN A W. The cascade analysis for energy and process integration of batch processes (): network design and process scheduling [J]. Chemical Engineering Research & Design, 1989, 67(5): 510-516. | 12 | KEMP I C, DEAKIN A W. The cascade analysis for energy and process integration of batch processes (Ⅲ): a case study [J]. Chemical Engineering Research & Design, 1989, 67(5): 517-525. | 13 | 夏修庆, 李玉刚, 郑世清. 带热贮存的间歇过程最小公用工程目标的确定[J]. 青岛科技大学学报(自然科学版), 2007, 28(2): 138-141. | 13 | XIA Xiuqing, LI Yugang, ZHENG Shiqing. Utility target of batch process with heat storage [J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2007, 28(2): 138-141. | 14 | 张早校, 冯霄, 郁永章. 间歇过程热回收目标的研究[J]. 西安交通大学学报, 2000, 34(8): 79-82. | 14 | ZHANG Zaoxiao, FENG Xiao, YU Yongzhang. Heat recovery for energy integration of batch processes [J]. Journal of Xi’an Jiaotong University, 2000, 34(8): 79-82. | 15 | 李志红, 宋子明, 袁志敏. 间歇过程能量平衡和平衡分析方法的研究[J]. 高校化学工程学报, 2002, 16(1): 1-6. | 15 | LI Zhihong, SONG Ziming, YUAN Zhimin. Study on analysis method of energy balance and exergy balance for batch process [J]. Journal of Chemical Engineering of Chinese Universities, 2002, 16(1): 1-6. | 16 | 刘琳琳, 都健, 肖丰, 等. 基于虚拟温度法的间歇过程换热器网络综合[J]. 计算机与应用化学, 2009, 26(8): 1017-1021. | 16 | LIU Linlin, DU Jian, XIAO Feng, et al. Heat exchanger network synthesis based on the pseudo-temperature for batch processes [J]. Computers and Applied Chemistry, 2009, 26(8): 1017-1021. | 17 | YANG Po, LIU Linlin, DU Jian, et al. Heat exchanger network synthesis for batch processes by involving heat storages with cost targets [J]. Applied Thermal Engineering, 2014, 70(2): 1276-1282. | 18 | CHATURVEDI N D, BANDYOPADHYAY S. Indirect thermal integration for batch processes [J]. Applied Thermal Engineering, 2014, 62(1): 229-238. | 19 | ABDELOUADOUD Y, LUCAS E, KRUMMENACHER P, et al. Batch process heat storage integration: a simple and effective graphical approach [J]. Energy, 2019, 185: 804-818. | 20 | LINNHOFF B, HINDMARSH E. The pinch design method for heat exchanger networks [J]. Chemical Engineering Science, 1983, 38(5): 745-763. | 21 | VASELENAK J A, GROSSMANN I E, WESTERBERG A W. Heat integration in batch processing [J]. Industrial & Engineering Chemistry Process Design & Development, 1986, 25(2): 357-366. | 22 | JUNG S H, LEE I B, YANG D R, et al. Synthesis of maximum energy recovery networks in batch processes [J]. Korean Journal of Chemical Engineering, 1994, 11(3): 162-171. | 23 | KRUMMENACHER P. Contribution to the heat integration of batch processes (with or without heat storage) [M]. EPFL Lausanne, 2002. | 24 | LIU Xiaolan, HOLGER M, HAO Zhifeng, et al. A compounded genetic and simulated annealing algorithm for the closest string problem [C]// The International Conference on Bioinformatics and Biomedical Engineering, IEEE, 2008. | 25 | HALIM I, SRINIVASAN R. Sequential methodology for scheduling of heat-integrated batch plants [J]. Industrial & Engineering Chemistry Research, 2009, 48(18): 8551-8565. | 26 | 朱振兴, 卫宏远, 杨华. 考虑能耗影响的多产品间歇化工过程优化排序[J]. 化工进展, 2006, 25(12): 1504-1507. | 26 | ZHU Zhenxing, WEI Hongyuan, YANG Hua. Optimal scheduling of multiproduct batch chemical process with considerations of energy-consuming [J]. Chemical Industry and Engineering Progress, 2006, 25(12): 1504-1507. | 27 | 谢立, 何星, 张卫东, 等. 一类间歇化工过程的热集成调度模型化研究[J]. 系统仿真学报, 2001(1): 72-75. | 27 | XIE Li, HE Xing, ZHANG Weidong, et al. Modeling for heat integrated scheduling of batch process [J]. Journal of System Simulation, 2001(1): 72-75. | 28 | FLOUDAS C A, LIN Xiaoxia. Continuous-time versus discrete-time approaches for scheduling of chemical processes: a review [J]. Computers & Chemical Engineering, 2004, 28(11): 2109-2129. | 29 | YEE T F, GROSSMANN I E. Simultaneous optimization models for heat integration (Ⅱ): heat exchanger network synthesis [J]. Computers & Chemical Engineering, 1990, 14(10): 1165-1184. | 30 | HELLWIG T, TH?NE E. Omnium: ein verfahren zur optimierung der abwarmenutzung [J]. BWK (Brennstoff, Warme, Kraft), 1994, 46: 393-397. | 31 | PAV?O L V, MIRANDA C B, COSTA C B B, et al. Efficient multiperiod heat exchanger network synthesis using a meta-heuristic approach [J]. Energy, 2018, 142: 356-372. | 32 | PAPAGEORGIOU L G, CHARALAMBIDES M S, SHAH N, et al. Optimal operation of thermally coupled batch processes [J]. Lancet, 1994, 286(2): 1266-1268. | 33 | BOYADJIEV C, IVANOV B, VAKLIEVA-BANCHEVA N, et al. Optimal energy integration in batch antibiotics manufacture [J]. Computers & Chemical Engineering, 1996, 20(12): 31-36. | 34 | ZHAO X G, O'NEILL B K, ROACH J R, et al. Heat integration for batch processes (Ⅰ): process scheduling based on cascade analysis [J]. Chemical Engineering Research & Design, 1998, 76(6): 685-699. | 35 | LEWIN D R. A generalized method for HEN synthesis using stochastic optimization (): the synthesis of cost-optimal networks [J]. Computers & Chemical Engineering, 1998, 22(10): 1387-1405. | 36 | SHAHANE P S, MATHPATI C S, JOGWAR S S. Robustness analysis of heat-integrated batch process networks [J]. Industrial & Engineering Chemistry Research, 2018, 58(1): 217-227. | 37 | JIANG Da, CHANG Chueitin. A new approach to generate flexible multiperiod heat exchanger network designs with timesharing mechanisms [J]. Industrial & Engineering Chemistry Research, 2013, 52(10): 3794-3804. | 38 | 陈彩虹, 蒋达, 钱锋. 基于换热器分时共享机制的多时期换热网络结构设计[J]. 化工进展, 2014, 33(4): 843-849. | 38 | CHEN Caihong, JIANG Da, QIAN Feng. A multi-period HEN structure design based on heat exchanger timesharing mechanism [J]. Chemical Industry and Engineering Progress, 2014, 33(4): 843-849. | 39 | PAV?O L V, COSTA C B B, RAVAGNANI M A S S. Heat exchanger network synthesis without stream splits using parallelized and simplified simulated annealing and particle swarm optimization [J]. Chemical Engineering Science, 2017, 158: 96-107. | 40 | KRUMMENACHER P, FAVRAT D. Indirect and mixed direct-indirect heat integration of batch processes based on pinch analysis [J]. International Journal of Thermodynamics, 2001, 4(3): 135-143. | 41 | PEREDO J, RENEDO C J, ORTIZ A, et al. Empleo de almacenamientos térmicos en redes industriales de intercambiadores de calor para recuperación energética [J]. Ingeniería Química Uruguay, 2008, 33: 22-29. | 42 | PIRES A C, FERNANDES C M, NUNES C P. An energy integration tool for batch process, sustainable development of energy, water and environment systems [C]// Proceedings of the 3rd Dubrovnik Conference, 2005: 5-10. | 43 | DE BOER R, SMEDING S F, BACH P W. Heat storage systems for use in an industrial batch process (results of) a case study [C]// 10th International Conference on Thermal Energy Storage, ECOSTOCK, 2006. | 44 | CHEN Chengliang, CIOU Yingjyuan. Design and optimization of indirect energy storage systems for batch process plants [J]. Industrial & Engineering Chemistry Research, 2008, 47(14): 4817-4829. | 45 | CHEN Chengliang, CIOU Yingjyuan. Design of indirect heat recovery systems with variable-temperature storage for batch plants [J]. Industrial & Engineering Chemistry Research, 2009, 48(9): 4375-4387. | 46 | STAMP J D, MAJOZI T. Long-term heat integration in multipurpose batch plants using heat storage [J]. Journal of Cleaner Production, 2017, 142(4): 1492-1509. | 47 | 都健, 杨坡, 刘琳琳, 等. 带有热储罐的间歇过程换热网络综合[J]. 化工学报, 2013, 64(12): 4325-4329. | 47 | DU Jiang, YANG Po, LIU Linlin, et al. Heat exchanger network synthesis for batch processes involving heat storage [J]. CIESC Journal, 2013, 64(12): 4325-4329. | 48 | SHAHANE P S, MATHPATI C S, JOGWAR S S. Design of mixed energy-integrated batch process networks by pseudo-direct approach [J]. AIChE Journal, 2017, 64(1): 55-67. | 49 | MAJOZI T. Augmented heat integration in multipurpose batch plants using multiple heat storage vessels [M] //Sustainable energy technology and policies. Singapore: Springer Nature Singapore Pte Ltd., 2018: 183-216. | 50 | LEE B, REKLAITIS G V. Optimal scheduling of cyclic batch processes for heat integration (Ⅰ): basic formulation [J]. Computer & Chemical Engineering, 1995, 19(8): 883-905. | 51 | TOKOS H, PINTARIC Z N, GLAVIC P. Energy saving opportunities in heat integrated beverage plant retrofit [J]. Applied Thermal Engineering, 2010, 30(1): 36-44. | 52 | ADONYI R, ROMERO J, PUIGJANER L, et al. Incorporating heat integration in batch process scheduling [J]. Applied Thermal Engineering, 2003, 23(14): 1743-1762. | 53 | CASTRO P M, GROSSMANN I E, ZHANG Qi. Expanding scope and computational challenges in process scheduling [J]. Computers & Chemical Engineering, 2018, 114: 14-42. | 54 | HOLCZINGER T, HEGYHATI M, FRIEDLER F. Simultaneous heat integration and batch process scheduling [J]. Chemical Engineering Transactions. 2012, 29(1): 337-342. | 55 | MAJOZI T. Heat integration of multipurpose batch plants using a continuous-time framework [J]. Applied Thermal Engineering, 2006, 26(13): 1369-1377. | 56 | CHEN Chengliang, CHANG Chiayuan. A resource-task network approach for optimal short-term/periodic scheduling and heat integration in multipurpose batch plants [J]. Applied Thermal Engineering, 2008, 29(5): 1195-1208. | 57 | MAJOZI T, KLEME? J, DOVì V, et al. Minimization of energy use in multipurpose batch plants using heat storage: an aspect of cleaner production. [J]. Journal of Cleaner Production, 2009, 17(10): 945-950. | 58 | STAMP J D, MAJOZI T. Optimum heat storage design for heat integrated multipurpose batch plants [J]. Energy, 2011, 36(8): 5119-5131. | 59 | SEID E R, MAJOZI T. Heat integration in multipurpose batch plants using a robust scheduling framework [J]. Energy, 2014, 71: 302-320. | 60 | LEE J Y, SEID E R, MAJOZI T. Heat integration of intermittently available continuous streams in multipurpose batch plants [J]. Computers & Chemical Engineering, 2015, 74: 100-114. | 61 | LEE J Y, SEID E R, MAJOZI T. An improved model for heat integration of intermittent process streams in multipurpose batch plants [J]. Applied Thermal Engineering, 2016, 105: 822-838. | 62 | STAMP J D. Process integration as an optimisation tool in multipurpose batch plants [D]. Hatfield, South Africa: University of Pretoria, 2016. |
|