1 | 薛晓金, 孙琼, 王妍, 等. 氟离子对二氧化钛选择性光催化氧化环己烷的影响[J]. 化学学报, 2010, 68(6): 471-475. | 1 | XUE Xiaojin, SUN Qiong, WANG Yan, et al. Effect of fluoride ions on the selective photocatalytic oxidatin of cyclohexane over TiO2[J]. Acta Chimica Sinica, 2010, 68(6): 471-475. | 2 | 乔涛. 四面体钛基光催化氧化环己烷与环己烯的研究[D]. 长沙: 湖南师范大学, 2016. | 2 | QIAO Tao. Study tetrahedral carbon-bsaed photocatalytic oxidation of cyclohexane and cyclohexanol[D]. Changsha: Hunan Normal University, 2016. | 3 | 张利梅. 新型铬系催化剂的制备及可见光催化环己烷氧化性能研究[D]. 北京: 中国石油大学(北京), 2016. | 3 | ZHANG Limei. The preparation of new chromium catalysts and their catalytic performance of photocatalytic cyclohexane oxidation[D]. Beijing: China University of Petroleum(Beijing),2016. | 4 | SCHUCHARDT U, CARDOSO D, SERCHELI R, et al. Cyclohexane oxidation continues to be a challenge[J]. Applied Catallysis A: General, 2001, 211: 1-17. | 5 | 穆金城, 谷晓庆, 宋华. 催化氧化环己烷合成环己酮最新进展[J]. 精细石油化工进展, 2010, 11(6): 9-14. | 5 | MU Jincheng, GU Xiaoqing, SONG Hua. The latest progress on catalytic oxidation of cyclohexane to cyclohexanone[J]. Advances in Fine Petrochemicals, 2010, 11(6): 9-14. | 6 | 肖业鹏. 基于纳米银改性的两种新型二维材料催化环己烷氧化的研究[D]. 广州: 广东工业大学, 2018. | 6 | XIAO Yepeng. Oxideation of cyclohexane catayzed by two kind of novel 2D nano-materials based on nano silver modification[D]. Guangzhou: Guangdong University of Technology,2018. | 7 | ALMEIDA R A, MOULIJIN J A, MUL G. In situ ATR-FTIR study on the selective photo-oxidation of cyclohexane over anatase TiO2[J]. Journal of Physical Chemistry C, 2008, 112(5): 1552-1561. | 8 | ALMEIDA A R, MOULIJIN J A, MUL G. Photocatalytic oxidation of cyclohexane over TiO2: evidence for a Mar-Van Krevelen mechanism[J]. Journal of Physical Chemistry C, 2011, 115(4):1330-1338. | 9 | ALMEIDA A R, BERGER R, MOULIJIN J A, et al. Photo-catalytic oxidation of cyclohexane over TiO2: a novel interpretation of temperature dependent performance[J]. Physical Chemistry Chemical Physics, 2011, 13(4):1345-1355. | 10 | CAMEIRO J T, ALMEIDA A R, MOULIJIN J A, et al. Cyclohexane selective photocatalytic oxidation by anatase TiO2: influence of particle size and crystallinity[J]. Physical Chemistry Chemical Physics, 2010, 12(11): 2744-2750. | 11 | CARNEIRO J T, MOULIJIN J A, MUL G. Photocatalytic oxidation of cyclohexane by titanium dioxide: catalyst deactivation and regeneration[J]. Journal of Catalysis, 2010, 273(2):199-210. | 12 | HERNáNDEZ-ALONSO M D, ALMEIDA A R, MOULIJIN J A, et al. Identification of the role of surface acidity in the deactivation of TiO2 in the selective photo-oxidation of cyclohexane[J]. Catalysis Today, 2009, 143(3): 326-333. | 13 | ALMEIDA A R, CARNEIRO J T, MOULIJIN J A, et al. Improved performance of TiO2 in the selective photo-catalytic oxidation of cyclohexane by increasing the rate of desorption through surface silylation[J]. Journal of Catalysis, 2010, 273(2): 116-124. | 14 | DU P, MOULIJIN J A, MUL G. Selective photo(catalytic)-oxidation of cyclohexane: effect of wavelength and TiO2 structure on product yields[J]. Journal of Catalysis, 2006, 238(2): 342-352. | 15 | HATTORI H, IDE Y, OGO S, et al. Efficient and selective photocatalytic cyclohexane oxidation on a layered titanate modified with iron oxide under sunlight and CO2 atmosphere[J]. ACS Catalysis, 2012, 2(9): 1910-1915. | 16 | YANG D X, WU T B, CHEN C J, et al. The highly selective aerobic oxidation of cyclohexane to cyclohexanone and cyclohexanol over V2O5@TiO2 under simulated solar light irradiation[J]. Green Chemistry, 2017, 18: 311-318. | 17 | ZHAO X X, ZHANG Y, WEN P, et al. NH2-MIL-125(Ti)/TiO2 composites as superior visible-light photocatalysts for selective oxidation of cyclohexane[J]. Molecular Catalysis, 2018, 452:175-183. | 18 | SHIRAISHI Y, SHIOTA S, HIRAKAWA H, et al. Titanium dioxide/reduced graphene oxide hybrid photocatalysts for efficient and selective partial oxidation of cyclohexane[J]. ACS Catalysis, 2017, 7: 293-300. | 19 | SHIRAISHI Y, OHARA H, HIRAI T. Visible light-induced partial oxidation of cyclohexane on hydrophobically modified chromium-containing mesoporous silica with molecular oxygen[J]. Journal of Catalysis, 2008, 254(2): 365-373. | 20 | SHIRAISHI Y, OHARA H, HIRAI T. Hydrophobic Cr-Si mixed oxides as catalyst for visible light-induced partial oxidation of cyclohexane[J]. New Journal of Chemistry, 2010, 34(12): 2841-2846. | 21 | TERAMURA K, TANAKA T, KANI M, et al. Selective photo-oxidation of neat cyclohexane in the liquid phase over V2O5 /Al2O3[J]. Journal of Molecular Catalysis A: Chemical, 2004, 208(1): 299-305. | 22 | TERAMURA K, TANAKA T, OHUCHI T, et al. Study of the reaction mechanism of selective photooxidation of cyclohexane over V2O5/Al2O3[J]. Journal of Physical Chemistry C, 2009, 113(39):17018-17024. | 23 | SHIRAISHI Y, TESHIMA Y, HIRAI T. Visible light-induced selective oxidation of cyclohexane to cyclohexanone on Cr-Si binary oxide with molecular oxygen[J]. Chemical Communications, 2005 (36):4569-4571. | 24 | TSUKAMOTO D, SHIRO A, SHIRAISHI Y, et al. Visible-light-induced partial oxidation of cyclohexane by Cr/Ti/Si ternary mixed oxides with molecular oxygen[J]. Journal of Physical Chemistry C, 2011, 115(40):19782-19788. | 25 | ZHONG W Z, QIAO T, DAI J, et al. Visible-light-responsive sulfated vanadium-doped TS-1 with hollow structure: enhanced photocatalytic activity in selective oxidation of cyclohexane[J]. Journal of Catalysis, 2015, 330: 208-221. | 26 | WANG H, ZHANG Y, ZHANG L, et al. Synthesis of C-N dual-doped Cr2O3 visible light-driven photocatalyst derived from metal organic framework (MOF) for cyclohexane oxidation[J]. RSC Advances, 2016, 6: 84871-84881. | 27 | IDE Y, IWATA M, YAGENJI Y, et al. Fe oxide nanoparticles/Ti-modified mesoporous silica as a photo-catalyst for efficient and selective cyclohexane conversion with O2 and solar light[J]. Journal of Materials Chemistry A, 2016, 4(41):15829-15835. | 28 | TSUNOJI N, IDE Y, YAGENJI Y, et al. Design of layered silicate by grafting with metal acetylacetonate for high activity and chemoselectivity in photooxidation of cyclohexane[J]. ACS Applied Materials & Interfaces, 2014, 6(7):4616-21. | 29 | TANG S, WU W, FU Z, et al. Vanadium-substituted tungstophosphoric acids as efficient catalysts for visible-light-driven oxygenation of cyclohexane by dioxygen[J]. ChemCatChem, 2015, 7(17): 2637-2645. | 30 | TANG S, SHE J, FU Z, et al. Study on the formation of photoactive species in XPMo12-nVnO40-HCl system and its effect on photocatalysis oxidation of cyclohexane by dioxygens under visible light irradiation[J]. Applied Catalysis B: Environmental, 2017, 214:89-99. | 31 | ZHANG Y L, HU L L, ZHAO S Y, et al. Ag3PW12O40/C3N4 nanocomposites as an efficient photocatalyst for hydrocarbon selective oxidation[J]. RSC Advances, 2016, 6: 60394-60399. | 32 | FUKUZUMI S, KOTANI H, OHKUBO K, et al. Electron-transfer state of 9-mesityl-10-methylacridinium ion with a ucmh longer lifetime and higher energy than that of the natural photosynthetic reaction center[J]. Journal of the American Chemical Society, 2004, 126(6):1600-1601. | 33 | OHKUBO K, KOTANI H, FUKUZUMI S. Misleading effects of impurities derived from the extremely long-lived electron-transfer state of 9-mesityl-10-methylacridinium ion[J]. Chemical Communications, 2005(36): 4520-4522. | 34 | OHKUBO K, FUJIMOTO A, FUKUZUMI S. Metal-free oxygenation of cyclohexane with oxygen catalyzed by 9-mesityl-10-methylacridinium and hydrogen chloride under visible light irradiation[J]. Chemical Communications, 2011, 47(30): 8515-8517. | 35 | SHIMIZU K I, MURATA Y, SATSUMA A. Dicopper(II)-dioxygen complexes in Y zeolite for selective catalytic oxidation of cyclohexane under photoirradiation[J]. The Journal of Physical Chemistry C, 2007, 111(51):19043-19051. | 36 | ZHANG Y L, HU L L, ZHU C, et al. Air activation by metal-free photocatalyst for “total-green” hydrocarbon selective oxidation [J]. Catalysis Science &Technology, 2016, 6: 7252-7258. | 37 | 龙丹, 周俊伶, 时洪民, 等. 氧化亚铜光催化剂性能提升及增强机制的研究进展[J]. 化工进展, 2019, 38(6): 2756-2767. | 37 | LONG Dan, ZHOU Junling, SHI Hongmin,et al. Research progress on the improved performance of cuprous oxide photocatalyst and its enhancement mechanism[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2756-2767. | 38 | 黄文迪, 孙静, 申婷婷,等. Co-BiVO4异质结光催化剂的制备及其性能[J]. 化工进展, 2017, 36(11): 4080-4086. | 38 | HUANG Wendi, SUN Jing, SHEN Tingting, et al. Preparation and properties of Co-doped BiVO4 heterojunction photocatalysts fabricated by hydrothermal method[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4080-4086. | 39 | 刘文芳, 周汝利, 王燕子. 光催化剂TiO2改性的研究进展[J]. 化工进展, 2016, 35(8): 2446-2454. | 39 | LIU Wenfang, ZHOU Ruli, WANG Yanzi. Research progress on modification of TiO2 photocatalyst[J]. Chemical Industry and Engineering Progress, 2016, 35(8): 2446-2454. | 40 | GOMATHI D L, KAVITHA R. A review on plasmonic metal-TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system[J]. Applied Surface Science, 2016, 360: 601-622. | 41 | HOU W, CRONIN S B. A review of surface plasmon resonance-enhanced photocatalysis[J]. Advanced Functional Materials, 2013, 23(13):1612-1619. | 42 | KRAVETS V G, KABASHIN A V, BARNES W L, et al. Plasmonic surface lattice resonances: a review of properties and applications[J]. Chemical Reviews, 2018, 118(12): 5912-5951. | 43 | XIAO Y P, LIU J C, LIN Y T, et al. Novel graphene oxide-silver nanorod composites with enhanced photocatalytic performance under visible light irradiation[J]. Journal of Alloy and Compounds, 2017, 698: 170-177. | 44 | MAI J J, FANG Y X, LIU J C, et al. Simple synthesis of WO3-Au composite and their improved photothermal synergistic catalytic performance for cyclohexane oxidation[J]. Molecular Catalysis, 2019, 473: 110389. | 45 | LIU J, LIU R, LI H, et al. Au nanoparticles in carbon nanotubes with high photocatalytic activity for hydrocarbon selective oxidation[J]. Dalton Transactions, 2014, 43(34):12982-12988. | 46 | QIAO S, FAN B H, YANG Y M, et al. Copper nanoparticle/carbon quantum dots hybrid as green photocatalyst for high-efficiency oxidation of cyclohexane[J]. RSC Advance, 2015, 172: 1782-1789. | 47 | LIU R, HUANG H, LI H, et al. Metal nanoparticle/carbon quantum dot composite as a photocatalyst for high-efficiency cyclohexane oxidation[J]. ACS Catalysis, 2014, 4(1): 328-336. | 48 | MURCIA J J, HIDALGO M C, NAVíO J A, et al. Cyclohexane photocatalytic oxidation on Pt/TiO2 catalysts[J]. Catalysis Today, 2013, 209(15): 164-169. | 49 | LIU J, YANG Y M, LIU N Y, et al. Total photocatalysis conversion from cyclohexane to cyclohexanone by C3N4/Au nanocomposites[J]. Green Chemistry, 2014, 16(10): 4559-4565. | 50 | CARNEIRO J T, SAVENIJE T J, MOULIJIN J A, et al. The effect of Au on TiO2 catalyzed selective photocatalytic oxidation of cyclohexane[J]. Journal of Photochemistry & Photobiology A: Chemistry, 2011, 217(2/3): 326-332. | 51 | MAYANI V J, MAYANI S V, SANG W K. Palladium, gold, and gold-palladium nanoparticle-supported carbon materials for cyclohexane oxidation[J]. Chemical Engineering Communications, 2016, 203(4):539-547. | 52 | MOHAMED M M. Gold loaded titanium dioxide-carbon nanotube composites as active photocatalysts for cyclohexane oxidation at ambient conditions[J]. RSC Advance, 2015, 5: 46405-46414. | 53 | SHIRAISHI Y, SUGANO Y, ICHIKAWA S, et al. Visible light-induced partial oxidation of cyclohexane on WO3 loaded with Pt nanoparticles[J]. Catalysis Science & Technology, 2012, 2(2): 400-405. | 54 | ICHIHASHI Y, SAIJO S, TANIGUCHI M, et al. Study of cyclohexane photooxidation over Pt-WO3 catalysts mixed with TiO2 under visible light irradiation[J]. Materials Science Forum, 2010, 658: 149-152. | 55 | BOARINI P, CARASSITI V, MALDOTTI A, et al. Photocatalytic oxygenation of cyclohexane on titanium dioxide suspensions: effect of the solvent and of oxygen[J]. Langmuir, 1998, 14: 2080-2085. | 56 | XIANG L P, FAN J J, ZHONG W Z, et al. Heteroatom-induced band-reconstruction of metal vanadates for photocatalytic cyclohexane oxidation towards KA-oil selectivity[J]. Applied Catalysis A: General, 2019, 575: 120-131. | 57 | WU W F, HE X L, FU Z H, et al. Metal chlorides catalyzed selective oxidation of cyclohexane by molecular oxygen under visible irradiation[J]. Journal of Catalysis, 2012, 286: 6-12. | 58 | BRUSA M A, GRELA M A. Photon flux and wavelength effects on the selectivity and product yields of the photocatalytic air oxidation of neat cyclohexane on TiO2 particles[J]. The Journal of Physical Chemistry B, 2005, 109(5): 1914-1918. | 59 | SHE J, FU Z, LI J, et al. Visible light-triggered vanadium-substituted molybdophosphoric acids to catalyze liquid phase oxygenation of cyclohexane to KA oil by nitrous oxide[J]. Applied Catalysis B:Environmental, 2016, 182: 392-404. | 60 | CARNEIRO J T, YANG C C, MOULIJIN J A, et al. The effect of water on the performance of TiO2 in photocatalytic selective alkane oxidation[J]. Journal of Catalysis, 2011, 277(2): 129-133. | 61 | DIJK V H A V, SIMMELINK G, MUL G. The influence of water vapour on the photocatalytic oxidation of cyclohexane in an internally illuminated monolith reactor[J]. Applied Catalysis A: General, 2014, 470: 63-71. |
|