1 | SHIN J D, XU C B, KIM S H, et al. Biomass conversion of plant residues[M]//Food Bioconversion. Amsterdam: Elsevier. 2017:351-383. |
2 | DUFOUR A. Thermochemical conversion of biomass for the production of energy and chemicals[M]. New Jersey: John Wiley & Sons, 2016:158-190. |
3 | VERMA M, GODBOUT S, BRAR S K, et al. Biofuels production from biomass by thermochemical conversion technologies[J]. International Journal of Chemical Engineering, 2012, 2012: 542426. |
4 | DAI J J, JEAN S, JOHN R, et al. Gasification of woody biomass[J]. Chem. Biomol., 2015, 6: 77-99. |
5 | IBARRA G P, RONG B. A review of the current state of biofuels production from lignocellulosic biomass using thermochemical conversion routes[J]. Chinese Journal of Chemical Engineering, 2018, 27(7): 1523-1535. |
6 | HOSSAIN M A, JEWARATNAM J, GANESAN P. Prospect of hydrogen production from oil palm biomass by thermochemical process-a review[J]. International Journal of Hydrogen Energy, 2016, 41(38): 16637-16655. |
7 | HOSSEINI S E, WAHID M A. Utilization of palm solid residue as a source of renewable and sustainable energy in Malaysia[J]. Renewable and Sustainable Energy Reviews, 2014, 40: 621-632. |
8 | ANTOLINI D, AIL S S, PATUZZI F, et al. Experimental investigations of air-CO2 biomass gasification in reversed downdraft gasifier[J]. Fuel, 2019, 253: 1473-1481. |
9 | LI Z, ZHU B, WANG B, et al. Stress responses to trichlorophenol in Arabidopsis and integrative analysis of alteration in transcriptional profiling from microarray[J]. Gene, 2015, 555(2): 159-168. |
10 | LIU H, YU L, YANG L, et al. Vasoplegic syndrome: an update on perioperative considerations[J]. Journal of Clinical Anesthesia, 2017, 40: 63-71. |
11 | ZEB H, CHOI J, KIM Y, et al. A new role of supercritical ethanol in macroalgae liquefaction (Saccharina japonica): understanding ethanol participation, yield, and energy efficiency[J]. Energy, 2017, 118: 116-126. |
12 | GEERTEN VAN DE K, KAMP L, REZAEI J. Selection of biomass thermochemical conversion technology in the Netherlands: a best worst method approach[J]. Journal of Cleaner Production, 2017, 166: 32-39. |
13 | MINH LOY A C, YUSUP S, CHIN B L FUI, et al. Comparative study of in-situ catalytic pyrolysis of rice husk for syngas production: kinetics modelling and product gas analysis[J]. Journal of Cleaner Production, 2018, 197: 1231-1243. |
14 | HU X, GHOLIZADEH M. Biomass pyrolysis: a review of the process development and challenges from initial researches up to the commercialisation stage[J]. Journal of Energy Chemistry, 2019, 39: 109-143. |
15 | DING Y, ZHANG J, HE Q, et al. The application and validity of various reaction kinetic models on woody biomass pyrolysis[J]. Energy, 2019, 179:784-791. |
16 | BRIDGWATER A V. Review of fast pyrolysis of biomass and product upgrading[J]. Biomass and Bioenergy, 2012, 38: 68-94. |
17 | BRAND S, SUSANTI R F, KIM S K, et al. Supercritical ethanol as an enhanced medium for lignocellulosic biomass liquefaction: influence of physical process parameters[J]. Energy, 2013, 59: 173-182. |
18 | DIMITRIADIS A, BEZERGIANNI S. Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: a state of the art review[J]. Renewable and Sustainable Energy Reviews, 2017, 68: 113-125. |
19 | MA Y, WANG J, TAN W, et al. Directional liquefaction of lignocellulosic biomass for value added monosaccharides and aromatic compounds[J]. Industrial Crops and Products, 2019, 135: 251-259. |
20 | TABAKAEV R B, ASTAFEV A V, KAZAKOV A V, et al. Biomass conversion into solid composite fuel for bed-combustion[J]. MATEC Web of Conferences, 2015, 37: 1056. |
21 | YANG D, WEI S J, WEN Q M, et al. Comparison of pretreatments for lignocellulosic biomass[J]. Advanced Materials Research, 2014, 1008/1009: 111-115. |
22 | WEN H, WACHEMO A C, ZHANG L, et al. A novel strategy for efficient anaerobic co-digestion based on the pretreatment of corn stover with fresh vinegar residue[J]. Bioresource Technology, 2019, 288: 121412. |
23 | DENG C, LIN R, CHENG J, et al. Can acid pre-treatment enhance biohydrogen and biomethane production from grass silage in single-stage and two-stage fermentation processes?[J]. Energy Conversion and Management, 2019, 195: 738-747. |
24 | 郭秀娟. 生物质选择性热裂解机理研究[D]. 杭州:浙江大学, 2011. |
24 | GUO X J. Mechanism research on the selective pyrolysis behavior of biomass[D].Hangzhou: Zhejiang University, 2011. |
25 | LI M, YANG S, SUN R. Recent advances in alcohol and organic acid fractionation of lignocellulosic biomass[J]. Bioresource Technology, 2016, 200: 971-980. |
26 | JEROEN S, EMMIE D, BOUCHRA B, et al. Biorefining of wheat straw using an acetic and formic acid based organosolv fractionation process[J]. Bioresource Technology, 2014, 156: 275-282. |
27 | 闫桂焕,孙奉仲,孙荣峰,等. 生物质气化过程的热力学模型研究[J]. 农业机械学报, 2010, 41(9): 85-89. |
27 | YAN G H, SUN F Z, SUN R F, et al. Research on thermo dynamic model of biomass gasification process[J]. Transactions of the Chinese Society of Agricultural Machinery, 2010, 41(9): 85-89. |
28 | JARUNGTHAMMACHOTE S, DUTTA A. Equilibrium modeling of gasification: gibbs free energy minimization approach and its application to spouted bed and spout-fluid bed gasifiers[J]. Energy Conversion and Management, 2008, 49(6): 1345-1356. |
29 | PUIG-GAMERO M, ARGUDO-SANTAMARIA J, VALVERDE J L, et al. Three integrated process simulation using Aspen Plus?: pine gasification, syngas cleaning and methanol synthesis[J]. Energy Conversion and Management, 2018, 177: 416-427. |
30 | YU J, SMITH J D. Validation and application of a kinetic model for biomass gasification simulation and optimization in updraft gasifiers[J]. Chemical Engineering and Processing-Process Intensification, 2018, 125: 214-226. |
31 | SADHWANI N, LI P C, EDEN M, et al. Process modeling of fluidized bed biomass-CO2 gasification using ASPEN plus[J].Computer Aided Chemical Engineering, 2017, 40: 2509-2514. |
32 | PARDO-PLANAS O, ATIYEH H K, PHILLIPS J R, et al. Process simulation of ethanol production from biomass gasification and syngas fermentation[J]. Bioresource Technology, 2017, 245: 925-932. |
33 | HE J, ZHANG W. Techno-economic evaluation of thermo-chemical biomass-to-ethanol[J]. Applied Energy, 2011, 88(4): 1224-1232. |
34 | PALA L P R, WANG Q, KOLB G, et al. Steam gasification of biomass with subsequent syngas adjustment using shift reaction for syngas production: an Aspen Plus model[J]. Renewable Energy, 2017, 101: 484-492. |
35 | RAVIKIRAN A, RENGANATHAN T, PUSHPAVANAM S, et al. Generalized analysis of gasifier performance using equilibrium modeling[J]. Industrial & Engineering Chemistry Research, 2011, 51(4): 1601-1611. |
36 | KAUSHAL P, TYAGI R. Advanced simulation of biomass gasification in a fluidized bed reactor using ASPEN PLUS[J]. Renewable Energy, 2017, 101: 629-636. |
37 | PETERS J F, BANKS S W, BRIDGWATER A V, et al. A kinetic reaction model for biomass pyrolysis processes in Aspen Plus[J]. Applied Energy, 2017, 188: 595-603. |
38 | KRISTIN O, YRJ? S, JANI L. Process simulation development of fast pyrolysis of wood using Aspen Plus[J]. Energy & Fuels, 2015, 29(1): 205-217. |
39 | WRIGHT M M, DAUGAARD D E, SATRIO J A, et al. Techno-economic analysis of biomass fast pyrolysis to transportation fuels[J]. Fuel, 2010, 89: S2-S10. |
40 | HUMBIRD D, TRENDEWICZ A, BRAUN R, et al. One-dimensional biomass fast pyrolysis model with reaction kinetics integrated in an Aspen Plus biorefinery process model[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2463-2470. |
41 | 乔庆安,张建,鲍杰. 产业化工况下木质纤维素生物炼制过程的流程模拟[J]. 华东理工大学学报(自然科学版), 2013, 39(4): 427-432. |
41 | QIAO Q A, ZHANG J, BAO J. Flowsheet simulation of industrial scale biorefining processes of lignocellulose[J].Journal of East China University of Science and Technology(Natural Science Edition), 2013, 39(4): 427-432. |
42 | DAMARTZIS T, MICHAILOS S, ZABANIOTOU A. Energetic assessment of a combined heat and power integrated biomass gasification-internal combustion engine system by using Aspen Plus?[J]. Fuel Processing Technology, 2012, 95: 37-44. |
43 | SADHUKHAN J, ZHAO Y, SHAH N, et al. Performance analysis of integrated biomass gasification fuel cell (BGFC) and biomass gasification combined cycle (BGCC) systems[J]. Chemical Engineering Science, 2010, 65(6): 1942-1954. |
44 | 欧凤林. 褐煤与生物质在CO2气氛下共气化过程特性的研究[D]. 长沙:长沙理工大学, 2015. |
44 | OU F L. The study on co-gasification process characteristics of lignite with biomass in the CO2 atmosphere[D]. Changsha:Changsha University of Science & Technology, 2015. |
45 | 郝巧铃.生物质与煤共气化特性的研究[D]. 太原:太原理工大学,2012. |
45 | HAO Q L. Co-gasification characteristic of biomass and coal[D].Taiyuan: Taiyuan University of Technology,2012. |
46 | ANNA L P, MARK A S, AKWASI A B.Utilization of eucalyptus for electricity production in Brazil via fast pyrolysis: a techno-economic analysis[J]. Renewable Energy, 2018, 119: 590-597. |
47 | 黄金保. 纤维素快速热解机理的分子模拟研究[D].重庆:重庆大学, 2010. |
47 | HUANG J B. Molecular simulation study of pyrolysis mechanism of cellulose[D].Chongqing: Chongqing University, 2010. |
48 | 李明明. 量子化学软件在大学无机化学教学中的应用[J]. 科教文汇(中旬刊), 2019(6): 70-71. |
48 | LI M M. Application of quantum chemistry software in the teaching of inorganic chemistry in universities[J]. The Science Education Article Collects, 2019(6): 70-71. |
49 | WEIJING D, WEIHONG Z, XIAODONG Z, et al. The application of DFT in catalysis and adsorption reaction system[J]. Energy Procedia, 2018, 152: 997-1002. |
50 | MU B, XU H, LI W, et al. Quantitation of fast hydrolysis of cellulose catalyzed by its substituents for potential biomass conversion[J]. Bioresource Technology, 2019, 273: 305-312. |
51 | ZHANG M, GENG Z, YU Y. Density functional theory (DFT) study on the dehydration of cellulose[J]. Energy & Fuels, 2011, 25(6): 2664-2670. |
52 | ZHOU B, DICHIARA A, ZHANG Y, et al. Tar formation and evolution during biomass gasification: an experimental and theoretical study[J]. Fuel, 2018, 234: 944-953. |
53 | LU Q, TIAN H, HU B, et al. Pyrolysis mechanism of holocellulose-based monosaccharides: the formation of hydroxyacetaldehyde[J]. Journal of Analytical and Applied Pyrolysis, 2016, 120: 15-26. |
54 | 黄金保, 刘朝, 魏顺安,等. 纤维素热解形成左旋葡聚糖机理的理论研究[J].燃料化学学报, 2011,39(8):590-594. |
54 | HUANG J B, LIU Z, WEI S A, et al. A theoretical study on the mechanism of levoglucosan formation in cellulose pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2011,39(8):590-594. |
55 | LI J, YANG Y, ZHANG D. DFT study of fructose dehydration to 5-hydroxymethylfurfural catalyzed by imidazolium-based ionic liquid[J]. Chemical Physics Letters, 2019, 723: 175-181. |
56 | HUANG J, LIU C, WEI S, et al. Density functional theory studies on pyrolysis mechanism of β-D-glucopyranose[J]. Journal of Molecular Structure: THEOCHEM, 2010, 958(1-3): 64-70. |
57 | 梁洪林. 纤维素热解释放小分子气体机理的量子化学研究[D]. 吉林:东北电力大学,2019. |
57 | LIANG H L. Quantum chemical study on the mechanism of release of small molecular gases by pyrolysis of cellulose[D]. Jilin: Northeast Electric Power University, 2019. |
58 | 王鹏恒. CO/H2 /CH4在催化剂 Pd/γ-Al2O3上吸附机理的密度泛函研究[D]. 武汉:华中科技大学,2014. |
58 | WANG P H. Density functional theory study of adsorption mechanism of gasified biomass over catalyst Pd/γ-Al2O3[D]. Wuhan: Huazhong University of Science and Technology, 2014. |
59 | GIUPPONI G, HARVEY M J, DE FABRITIIS G. The impact of accelerator processors for high-throughput molecular modeling and simulation[J]. Drug Discovery Today, 2008, 13(23-24): 1052-1058. |
60 | PRONK S, PáLL S, SCHULZ R, et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit[J]. Bioinformatics, 2013, 29(7): 845-854. |
61 | VASUDEVAN V, MUSHRIF S H. Insights into the solvation of glucose in water, dimethyl sulfoxide (DMSO), tetrahydrofuran (THF) and N,N-dimethylformamide (DMF) and its possible implications on the conversion of glucose to platform chemicals[J]. RSC Advances, 2015, 5(27): 20756-20763. |
62 | 朱有涛. 离子液体溶解和降解木质素机理的理论研究[D].济南: 山东大学, 2017. |
62 | ZHU Y T. Theoretical studies on dissolution and depolymerization mechanisms of lignin in ionic liquid[D].Jinan: Shandong University, 2017. |
63 | 李垚. 离子液体溶解生物质的分子模拟研究[D]. 北京:中国科学院大学(中国科学院过程工程研究所), 2017. |
63 | LI Y. Molecular simulation study on dissolution of lignocellulosic biomass in ionic liquids[D]. Beijing:University of Chinese Academy of Sciences(Institute of Process Engineering, Chinese Academy of Sciences), 2017. |
64 | ISA K M, DAUD S, HAMIDIN N, et al. Thermogravimetric analysis and the optimisation of bio-oil yield from fixed-bed pyrolysis of rice husk using response surface methodology (RSM)[J]. Industrial Crops and Products, 2011, 33(2): 481-487. |
65 | CHANG C, DENG L, XU G Z. Efficient conversion of wheat straw into methyl levulinate catalyzed by cheap metal sulfate in a biorefinery concept[J]. Industrial Crops and Products, 2018, 117: 197-204. |
66 | 樊永胜. 生物质真空热解及催化转化制备生物油的基础研究[D]. 镇江: 江苏大学, 2016. |
66 | FAN Y S. Basic study on vacuum pyrolysis and catalytic transformation of biomass for preparation of bio-oil[D]. Zhenjiang: Jiangsu University, 2016. |
67 | TIONG Y W, YAP C L, GAN S, et al. Optimisation studies on the conversion of oil palm biomass to levulinic acid and ethyl levulinate via indium trichloride-ionic liquids: a response surface methodology approach[J]. Industrial Crops and Products, 2019, 128: 221-234. |
68 | 伊乐其. 生物质对中低阶煤热解行为的影响及其BP神经网络模型[D]. 上海: 华东理工大学, 2015. |
68 | YI L Q. The influence of biomass addition on low rank coal pyrolysis behavior and its BP neural network model[D].Shanghai:East China University of Science and Technology, 2015. |
69 | GHUGARE S B, TIWARY S, ELANGOVAN V, et al. Prediction of higher heating value of solid biomass fuels using artificial intelligence formalisms[J]. BioEnergy Research, 2014, 7(2): 681-692. |
70 | GHUGARE S B, TAMBE S S. Genetic programming based high performing correlations for prediction of higher heating value of coals of different ranks and from diverse geographies[J]. Journal of the Energy Institute, 2017, 90(3): 476-484. |
71 | GARCíA R, PIZARRO C, LAVíN A G, et al. Spanish biofuels heating value estimation. part II: Proximate analysis data[J]. Fuel, 2014, 117: 1139-1147. |
72 | ALEX O B F, ALLAN K D B, SOFIANE L,et al. Application of artificial neural networks to predict viscosity, iodine value and induction period of biodiesel focused on the study of oxidative stability[J]. Fuel, 2015, 145: 127-135. |
73 | ISMAIL F, SELEN C.Process synthesis of biodiesel production plant using artificial neural networks as the surrogate models[J]. Computers & Chemical Engineering, 2012, 46: 105-123. |
74 | 王红彦. 基于LCA的秸秆沼气和秸秆热解气化工程环境影响评价[D]. 北京:中国农业科学院, 2018. |
74 | WANG H Y. Environmental impact evaluation of straw biogas and straw gasification projects based on LCA[D].Beijing:Chinese Academy of Agricultural Sciences, 2018. |
75 | YANG K, ZHU N, YUAN T. Analysis of optimum scale of biomass gasification combined cooling heating and power (CCHP) system based on life cycle assessment(LCA)[J]. Procedia Engineering, 2017, 205: 145-152. |
76 | SOAM S, BORJESSON P, SHARMA P K, et al. Life cycle assessment of rice straw utilization practices in India[J]. Bioresource Technology, 2017, 228: 89-98. |
77 | SHI X, RONSSE F, ROEGIERS J, et al. 3D Eulerian-eulerian modeling of a screw reactor for biomass thermochemical conversion. part 1: Solids flow dynamics and back-mixing[J]. Renewable Energy, 2019, 143: 1465-1476. |
78 | HARISWARAN S, NICHOLAS D, JAMES J L,et al. Coupled CFD and chemical-kinetics simulations of cellulosic-biomass enzymatic hydrolysis: mathematical-model development and validation[J]. Chemical Engineering Science, 2019, 206: 348-360. |