1 |
LAWAN I, ZHOU W, GARBA Z N, et al. Critical insights into the effects of bio-based additives on biodiesels properties[J]. Renewable and Sustainable Energy Reviews, 2019, 102: 83-95.
|
2 |
ERDOGAN S, BALKI M K, AYDIN S, et al. The best fuel selection with hybrid multiple-criteria decision making approaches in a CI engine fueled with their blends and pure biodiesels produced from different sources[J]. Renewable Energy, 2019, 134: 653-668.
|
3 |
方正, 吕德义. 微藻制备生物柴油的研究进展[J]. 现代化工, 2017, 37(9): 57-61.
|
|
FANG Z, LÜ D Y. Research progress on biodiesel production by microalgae[J]. Modern Chemical Industry, 2017, 37(9): 57-61.
|
4 |
朱顺妮, 刘芬, 樊均辉, 等. 微藻生物能源研究现状及展望[J]. 新能源进展, 2018, 6(6): 467-474.
|
|
ZHU S N, LIU F, FAN J H, et al. Research progress and prospect of microalgae bioenergy[J]. Advance in New and Renewable Energy, 2018, 6(6): 467-474.
|
5 |
XU Y J, LI G X, SUN Z Y. Development of biodiesel industry in China: upon the terms of production and consumption[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 18-330.
|
6 |
RAJAK U, VERMA T N. Efficient of emission from ethylic biodiesel of edible and non-edible vegetable oil, animal fats, waste oil and alcohol in CI engine[J]. Energy Conversion and Management, 2018, 166(15): 704-718.
|
7 |
MOFIJUR M, RASUL M G, HASSAN N M S, et al. Recent development in the production of third generation biodiesel from microalgae[J]. Energy Procedia, 2019, 156: 53-58.
|
8 |
GOH B H H, ONG H C, CHEAH M Y, et al. Sustainability of direct biodiesel synthesis from microalgae biomass: a critical review[J]. Renewable and Sustainable Energy Reviews, 2019, 107: 59-74.
|
9 |
张冀翔, 王东, 魏耀东. 微藻水热液化生物油物理性质与测量方法综述[J]. 化工进展, 2016, 35(1): 98-103.
|
|
ZHANG J X, WANG D, WEI Y D. Physical properties and their measuring methods of hydrothermal liquefaction bio-crude from microalgae: a review[J]. Chemical Industry and Engineering Progress, 2016, 35(1): 98-103.
|
10 |
FARIED M, SAMER M, ABDELSALAM E, et al. Biodiesel production from microalgae: processes, technologies and recent advancements[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 893-913.
|
11 |
WEYER K M, BUSH D R, DARZINS A, et al. Theoretical maximum algal oil production[J]. BioEnergy Research, 2010, 3(2): 204-213.
|
12 |
邓帅, 李双俊, 宋春风, 等. 微藻光合固氮效能研究:进展、挑战和解决路径[J]. 化工进展, 2018, 37(3): 928-936.
|
|
DENG S, LI S J, SONG C F. et al. Energy efficiency research on photochemical-based microalgae carbon capture: progress, challenge and developing pathway[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 928-936.
|
13 |
TAN X B, LAM M K, UEMURA Y, et al. Cultivation of microalgae for biodiesel production: a review on upstream and downstream processing[J]. Chinese Journal of Chemical Engineering, 2018, 26(1): 17-30.
|
14 |
高保燕, 黄罗冬, 张成武. 微藻藻种的筛选和育种及基因工程改造[J]. 生物产业技术, 2016, 4(7): 27-31.
|
|
GAO B Y, HUANG L D, ZHANG C W. Screening and breeding of microalgae species and genetic engineering modification[J]. Biotechnology & Business, 2017, 4(7): 27-31.
|
15 |
陈百灵, 白凤武, 赵心清. 微藻代谢工程改造研究进展及展望[J]. 中国科学: 生命科学, 2017, 47(5): 554-562.
|
|
CHEN B L, BAI F W, ZHAO X Q. Metabolic engineering of microalgae: a review and future prospects[J]. Scientia Sinica Vitae, 2017, 47(5): 554-562.
|
16 |
TRENTACOSTE E M, SHRESTHA R P, SMITH S R, et al. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth[J]. Proceeding of the National Academy of Science of the USA, 2013, 110: 19748-19753.
|
17 |
OEY M, ROSS I L, STEPHENS E, et al. RNAi knock-down of LHCBM1, 2 and 3 increases photosynthetic H2 production efficiency of the green alga Chlamydomonas reinhardtii[J]. PLoS One, 2013, 8(6): 375-380.
|
18 |
任丽, 张永刚, 马睿, 等.代谢组学及其在微藻研究中的应用[J]. 微生物学通报, 2018, 45(1): 166-172.
|
|
REN L, ZHANG Y G, MA R, et al. Metabolomics and its application in the study of microalgae[J]. Microbiology China, 2018, 45(1): 166-172.
|
19 |
刘伟, 潘杨, 陈园. 微藻培养及其应用于水处理的主要形式[J]. 现代化工, 2016, 36(5): 44-47.
|
|
LIU W, PAN Y, CHEN Y. Research progress of microalgae cultivation and its application in wastewater treatment[J]. Modern Chemical Industry, 2016, 36(5): 44-47.
|
20 |
WIGMOSTA M S, COLEMAN A M, SKAGGS R J, et al. National microalgae biofuel production potential and resource demand[J]. Water Resources Research, 2011, 47(3): 1-13.
|
21 |
MUNOZ R, GUIEVSSE B. Algal-bacterial processes for the treatment of hazardous contaminants: a review[J]. Water Research, 2006, 40: 799-815.
|
22 |
张方, 熊绍专, 何加龙, 等. 用于生物柴油生产的微藻培养技术研究进展[J]. 化学与生物工程, 2018, 35(1): 5-11.
|
|
ZHANG F, XIONG S Z, HE J L, et al. Research progress in cultivation technology of microalgae for biodiesel production[J]. Chemistry & Bio-Engineering, 2018, 35(1): 5-11.
|
23 |
CHISTI Y. Biodiesel from microalgae[J]. Biotechnology Advances, 2007, 25(3): 294-306.
|
24 |
PULZ O. Photobioreactors: production systems for phototrophic microorganisms[J]. Applied Microbiology and Biotechnology, 2001, 57(3): 287-293.
|
25 |
BEILEN J B VAN. Why microalgal biofuels won't save the internal combustion machine[J]. Biofuels, Bioproducts and Biorefining, 2010, 4(1): 41-52.
|
26 |
HARISKOS I, POSTEN C. Biorefinery of microalgae-opportunities and constraints for different production scenarios[J]. Biotechnology Journal, 2014, 9: 739-752.
|
27 |
NARALA R R, GARG S, SHARMA K K, et al. Comparison of microalgae cultivation in photobioreactor, open raceway pond, and a two-stage hybrid system[J]. Frontiers in Energy Research, 2016, 4: 29-32.
|
28 |
黎秋玲, 李志, 张庆华, 等. 富油微藻的选育及规模化培养研究进展[J]. 中国油脂, 2018, 44(7): 122-126.
|
|
LI Q L, LI Z, ZHANG Q H, et al. Advance in screening and scale cultivation of oil-producing microalgae[J].China Oils and Fats, 2018, 44(7): 122-126.
|
29 |
RA C H, KANG C H, NA K K, et al. Cultivation of four microalgae for biomass and oil production using a two-stage culture strategy with salt stress[J]. Renewable Energy, 2015, 80: 117-122.
|
30 |
FAN J, HUANG J, LI Y, et al. Sequential heterotrophy-dilution-photo induction cultivation for efficient microalgal biomass and lipid production[J]. Bioresource Technology, 2012, 112(5): 206-211.
|
31 |
郭沛, 马荣江, 余南阳, 等. 基于微藻培养的沼液处理相关耦合技术进展[J]. 化工进展, 2019, 38(2): 1027-1037.
|
|
GUO P, MA R J, YU N Y, et al. Recent progress in coupling technologies of biogas slurry treatment based on microalgae cultivation[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 1027-1037.
|
32 |
CHEIRSILP B, SUWANNARAT W, NIYOMDECHA R. Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock[J]. New Biotechnology, 2011, 28(4): 362-368.
|
33 |
左正三, 孙小曼, 任路静, 等. 微藻生产油脂培养新技术[J]. 中国生物工程杂志, 2018, 38(7): 102-109.
|
|
ZUO Z S, SUN X M, REN L J, et al. Improvement of lipid accumulation in microalgae by novel cultivation strategies[J]. China Biotechnology, 2018, 38(7): 102-109.
|
34 |
LARDON L, HELIAS A, SIALVE B, et al. Life-cycle assessment of biodiesel production from microalgae[J]. Environmental Science and Technology, 2009, 43(17): 6475-6481.
|
35 |
姜加伟, 程丽华, 徐新华, 等. 微藻固定转化烟气CO2强化技术[J]. 化工进展, 2014, 33(7): 1884-1894.
|
|
JIANG J W, CHENG L H, XU X H, et al. Intensified technology for microalgal CO2 fixation and conversion from flue gas[J]. Chemical Industry and Engineering Progress, 2014, 33(7): 1884-1894.
|
36 |
STEPHENSON A L, KAZAMIA E, DENNIS J S, et al. Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors[J]. Energy and Fuels, 2010, 24(7): 4062-4077.
|