化工进展 ›› 2019, Vol. 38 ›› Issue (10): 4437-4443.DOI: 10.16085/j.issn.1000-6613.2019-0007

• 化工过程与装备 • 上一篇    下一篇

草酸强化三价铁离子的反萃性能

袁飞刚1,2()   

  1. 1. 中南大学冶金与环境学院,湖南 长沙 410083
    2. 稀有金属冶金与材料制备湖南省重点实验室,湖南 长沙 410083
  • 收稿日期:2019-01-02 出版日期:2019-10-05 发布日期:2019-10-05
  • 通讯作者: 袁飞刚
  • 作者简介:袁飞刚(1986—),男,博士研究生,研究方向为有色金属复杂资源高效提取、相似元素分离和冶金过程强化等。E-mail:fgyuan@csu.edu.cn
  • 基金资助:
    国家重点研发计划(2018YFC1901603)

Intensification of the stripping characteristics of iron (Ⅲ) using oxalic acid

Feigang YUAN1,2()   

  1. 1. School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China
    2. Key Laboratory of Hunan Province for Metallurgy and Material Processing of Rare Metals, Changsha 410083, Hunan, China
  • Received:2019-01-02 Online:2019-10-05 Published:2019-10-05
  • Contact: Feigang YUAN

摘要:

二(2-乙基己基)磷酸(P204)常作为溶液净化除铁的萃取剂,P204-磺化煤油体系中Fe3+与有机相形成络合能力较强的萃合物,使得Fe3+反萃比较困难,需采用较高浓度的酸作为反萃剂,但高浓度的酸会破坏有机分子的结构,影响萃取剂循环利用。针对P204-磺化煤油负铁有机相反萃困难的问题,提出利用草酸为反萃剂对负载1g/L铁的P204-磺化煤油有机相的反萃行为进行研究,考察了反萃转速、草酸浓度、反萃温度、反萃时间和相比对Fe3+反萃率的影响。结果表明:以反萃转速200r/min,草酸0.4mol/L,反萃时间10min,反萃温度40℃,反萃相比1∶1,采用二级逆流萃取方式,铁的反萃率可以达到99%以上;Fe3+反萃过程是吸热反应,其反应的焓变为81.58kJ/mol,反萃过程符合准一级反应动力学方程,对应活化能为49.5kJ/mol。进一步研究了反萃后P204-磺化煤油有机相对Fe3+的萃取性能。结果表明:经5次草酸反萃后的P204-磺化煤油有机相萃铁性能几乎不变,对比于高浓度的酸反萃,草酸反萃简化了反萃流程,降低了萃取剂的消耗。

关键词: 铁, 二(2-乙基己基)磷酸, 溶剂萃取, 反萃, 草酸, 焓, 反应动力学

Abstract:

Di-2-ethylhexyl phosphoric acid (D2EHPA) was used as extractant for deironing from solutions. The difficulty in stripping of Fe3+ from D2EHPA-kerosene phase was due to the strong complexation ability between Fe3+and D2EHPA. The frequently-used method to strip Fe3+ from an organic solvent was the use of high concentrated acidic solutions. However, the use of a concentrated acidic solution would destroy the organic molecules and influence the cycling utilization of extractant. In this study, a process employing oxalic acid to increase the efficiency of Fe3+ stripping of Fe3+-D2EHPA complexes from D2EHPA-kerosene phase has been developed. The process has been studied to optimize various process variables such as shaking speed, oxalic acid concentration, temperature, equilibration time and phase ratio for effective separation of Fe3+. The results showed that approximate 99% of Fe3+ can be stripped from D2EHPA-kerosene phase loaded with 1g/L of Fe3+ after a two stage counter-current contact under the optimum conditions, where 0.4mol/L of oxalic acid was used to strip(Ⅲ) iron from Fe3+-D2EHPA complexes for 10min at 40℃ with a 1∶1 volumeric phase ratio (O/A, volume of Fe3+-loaded D2EHPA-kerosene phase-0.4mol/L of oxalic acid aqueous solution). According to the results, the stripping of Fe3+ is an endothermic reaction with the enthalpy change of 81.58kJ/mol. In addition, the reaction was found to follow pseudo first order kinetics with the activation energy of 49.5kJ/mol. The stripping method was further tested to remove Fe3+ from D2EHPA-kerosene phase after being used for the extraction of Fe3+ from Fe2(SO4)3 aqueous solution. The results showed the extraction rate of Fe3+ remains unchanged after D2EHPA-kerosene phase being recycled for five times using 0.4mol/L of oxalic acid stripping solution, which is far more effective than high concentrated acidic solutions employed in the previous reports. The proposed stripping process could further simplify the stripping operation and reduce the extractant loss.

Key words: iron(Ⅲ), D2EHPA, solvent extraction, stripping, oxalic acid, enthalpy, reaction kinetics

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn