化工进展 ›› 2019, Vol. 38 ›› Issue (07): 3185-3193.DOI: 10.16085/j.issn.1000-6613.2018-1959
收稿日期:
2018-09-28
出版日期:
2019-07-05
发布日期:
2019-07-05
通讯作者:
范振忠
作者简介:
梁婷(1990—),女,博士研究生,研究方向为油田化学。E-mail:<email>lt19900201@126.com</email>。
基金资助:
Ting LIANG(),Zhenzhong FAN(),Qingwang LIU,Jigang WANG,Li CAI,Yuanfeng FU,Qilei TONG
Received:
2018-09-28
Online:
2019-07-05
Published:
2019-07-05
Contact:
Zhenzhong FAN
摘要:
超疏水/超双疏材料存在耐久性和稳定性的问题,因此很大程度影响了超疏水/超双疏材料的实际应用。受自然界中荷叶、三叶草等超疏水表面在受到破坏后,表面粗糙结构和表面组成可以恢复直到生物死亡的启发,科研学者通过不断探索研究出修复超疏水/超双疏材料的一些方式。本文从低表面能物质和表面微观结构的自修复角度出发,综述了影响超疏水/超双疏表面的自修复方式。当超疏水/超双疏表面受到物理破坏或者化学破坏时,失去超疏水以及超疏油性能,在温度、相对湿度、机械、UV等诱导条件下,低表面能物质迁移至表面完成自修复过程以及表面微观结构的自修复,从而使超疏水以及超疏油性能得以恢复。价格低廉的环保材料和系统性地研究自修复的机理是将来超疏水/超双疏自修复材料的主要研究方向。
中图分类号:
梁婷, 范振忠, 刘庆旺, 王继刚, 才力, 付沅峰, 仝其雷. 超疏水/超双疏表面自修复方式的研究进展[J]. 化工进展, 2019, 38(07): 3185-3193.
Ting LIANG, Zhenzhong FAN, Qingwang LIU, Jigang WANG, Li CAI, Yuanfeng FU, Qilei TONG. Research progress on the self-healing on superhydrophobic/superamphiphobic surface[J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3185-3193.
1 | GUO Z , LIU W . Biomimic from the superhydrophobic plant leaves in nature: binary structure and unitary structure[J]. Plant Science, 2007, 172(6):1103-1112. |
2 | ZHENG Y , BAI H , HUANG Z , et al . Directional water collection on wetted spider silk[J]. Nature, 2010, 463(7281): 640-643. |
3 | BORMASHENKO E , BORMASHENKO Y , STEIN T , et al . Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie-Baxter wetting hypothesis and Cassie-Wenzel capillarity-induced wetting transition[J]. Journal of Colloid & Interface Science, 2007, 311(1):212-216. |
4 | YIN W , ZHENG Y L , LU H Y , et al . Three-dimensional topographies of water surface dimples formed by superhydrophobic water strider legs[J]. Applied Physics Letters, 2016, 109(16):163701. |
5 | WANG N , XIONG D , DENG Y , et al . Mechanically robust superhydrophobic steel surface with anti-icing, UV-durability, and corrosion resistance properties[J]. ACS Applied Materials & Interfaces, 2015, 7(11): 6260-6272. |
6 | WANG Y , ZHU Y , ZHANG C , et al . Transparent, superhydrophobic surface with varied surface-tension responsiveness in wettability based on tunable porous silica structure for gauging liquid surface tension[J]. ACS Applied Materials & Interfaces, 2017, 9(4):4142-4150. |
7 | VILARÓ I , YAGÜE J L , BORROS S . Superhydrophobic copper surfaces with anti-corrosion properties fabricated by solventless CVD methods[J]. ACS Applied Materials & Interfaces, 2016, 9(1):1057-1065. |
8 | LI Y , WANG X , SUN J . ChemInform abstract: layer-by-layer assembly for rapid fabrication of thick polymeric films[J]. Chemical Society Reviews, 2012, 41(18): 5998-6009. |
9 | ZHANG Y , YANG S , WANG S , et al . Engineering high-performance MoO2-based nanomaterials with supercapacity and superhydrophobicity by tuning the raw materials source[J]. Small, 2018,14(25): e1800480. |
10 | DONG S , HUANG C , YOU H , et al . Preparation of superhydrophobic surface with a novel sol-gel system[J]. Applied Surface Science, 2011, 258(2): 928-934. |
11 | LU Y , SATHASIVAM S , SONG J , et al . Repellent materials. Robust self-cleaning surfaces that function when exposed to either air or oil[J]. Science, 2015, 347(6226):1132-1135. |
12 | WU G , AN J , TANG X , et al . A versatile approach towards multifunctional robust microcapsules with tunable, restorable, and solvent-proof superhydrophobicity for self-healing and self-cleaning coatings[J]. Advanced Functional Materials, 2015, 24(43): 6751-6761. |
13 | YOON H , KIM H Y, LATTHE S S , et al . A highly transparent self-cleaning superhydrophobic surface by organosilane-coated alumina particles deposited via electrospraying[J]. Journal of Materials Chemistry A, 2015, 3(21):11403-11410. |
14 | SARANADHI D , CHEN D , KLEINGARTNER J A , et al . Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface[J]. Science Advances, 2016, 2(10):e1600686. |
15 | TUO Y, CHEN W , ZHANG H , et al . One-step hydrothermal method to fabricate drag reduction superhydrophobic surface on aluminum foil[J]. Applied Surface Science, 2018,446(15):230-235. |
16 | HAASE M F , GRIGORIEV D O , MÖHWALD H , et al . Development of nanoparticle stabilized polymer nanocontainers with high content of the encapsulated active agent and their application in water-borne anticorrosive coatings[J]. Advanced Materials, 2012, 24(18):2429-2435. |
17 | WANG G , SHUAI L , WEI S , et al . Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity[J]. Scientific Reports, 2016, 6:20933. |
18 | WANG Z , TANG Y , LI B . Excellent wetting resistance and anti-fouling performance of PVDF membrane modified with superhydrophobic papillae-like surfaces[J]. Journal of Membrane Science, 2017,540(15):401-410. |
19 | XUE C H , GUO X J , MA J Z, et al . Fabrication of robust and anti-fouling superhydrophobic surfaces via surface-initiated atom transfer radical polymerization[J]. ACS Applied Materials & Interfaces, 2015, 7(15):8251-8259. |
20 | WANG B , LIANG W , GUO Z , et al . Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature[J]. Chemical Society Reviews, 2015, 44(1):336-361. |
21 | TAO M , XUE L , LIU F , et al . An intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation[J]. Advanced Materials, 2014, 26(18):2943-2948. |
22 | XUE C H , LI Y , HOU J L , et al . Self-roughened superhydrophobic coatings for continuous oil-water separation[J]. Journal of Materials Chemistry A, 2015, 3(19):10248-10253. |
23 | LI Y , LI L , SUN J . Bioinspired self-healing superhydrophobic coatings[J]. Angewandte Chemie, 2010, 122(35):6265-6269. |
24 | JIN H , TIAN X , IKKALA O , et al . Preservation of superhydrophobic and superoleophobic properties upon wear damage[J]. Applied Materials & Interfaces, 2013, 5(3):485-488. |
25 | KULINICH S A , HONDA M , ZHU A L , et al . The icephobic performance of alkyl-grafted aluminum surfaces[J]. Soft. Matter., 2015, 11(5):856-861. |
26 | DENG X , MAMMEN L , ZHAO Y , et al . Transparent, thermally stable and mechanically robust superhydrophobic surfaces made from porous silica capsules[J]. Advanced Materials, 2011, 23(26):2962-2965. |
27 | TUUKKA V , CHRIS B , PIERS A , et al . Mechanically durable superhydrophobic surfaces[J]. Advanced Materials, 2011, 23(5):673-678. |
28 | ZHAO Y , XU Z , WANG X , et al . Photoreactive azido-containing silica nanoparticle/polycation multilayers: durable superhydrophobic coating on cotton fabrics[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2012, 28(15):6328-6335. |
29 | ZIMMERMANN J , REIFLER F A , FORTUNATO G , et al . A simple, one-step approach to durable and robust superhydrophobic textiles[J]. Advanced Functional Materials, 2010, 18(22):3662-3669. |
30 | DENG B , CAI R , YU Y , et al . Laundering durability of superhydrophobic cotton fabric[J]. Advanced Materials, 2010, 22(48):5473-5477. |
31 | HUA Z , WANG H , NIU H , et al . Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating[J]. Advanced Materials, 2012, 24(18):2409-2412. |
32 | WANG X , LIU X , ZHOU F , et al . Self-healing superamphiphobicity[J]. Chemical Communications, 2011, 47(8):2324-2326. |
33 | YOUNG T . An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805(95): 65-87. |
34 | NISHINO T , MEGURO M , NAKAMAE K , et al . The lowest surface free energy based on -CF3 alignment[J]. Langmuir, 1999, 15(13):4321-4323. |
35 | XUE C H , ZHANG Z D , ZHANG J , et al . Lasting and self-healing superhydrophobic surfaces by coating of polystyrene/SiO2 nanoparticles and polydimethylsiloxane[J]. Journal of Materials Chemistry A, 2014, 2(36):15001-15007. |
36 | WANG H , XUE Y , DING J , et al . Durable, self-healing superhydrophobic and superoleophobic surfaces from fluorinated-decyl polyhedral oligomeric silsesquioxane and hydrolyzed fluorinated alkyl silane[J]. Angewandte Chemie, 2011, 50(48):11433-11436. |
37 | WANG H , ZHOU H , GESTOS A , et al . Robust, superamphiphobic fabric with multiple self-healing ability against both physical and chemical damages[J]. ACS Applied Materials & Interfaces, 2013, 5(20):10221-10226. |
38 | WANG H , ZHOU H , GESTOS A , et al . Robust, electro-conductive, self-healing superamphiphobic fabric prepared by one-step vapour-phase polymerisation of poly(3,4-ethylenedioxythiophene) in the presence of fluorinated decyl polyhedral oligomeric silsesquioxane and fluorinated alkyl silane[J]. Soft Matter, 2012, 9(1):277-282. |
39 | LI B , ZHANG J . Durable and self-healing superamphiphobic coatings repellent even to hot liquids[J]. Chemical Communications, 2016,52(13):2744-2747. |
40 | DIKIĈ T , MING W , BENTHEM R A T M VAN , et al . Self-replenishing surfaces[J]. Advanced Materials, 2012, 24(27):3701-3704. |
41 | DIKIĈ T , MING W , THÜNE P C , et al . Well-defined polycaprolactone precursors for low surface-energy polyurethane films[J]. Journal of Polymer Science Part A, Polymer Chemistry, 2008, 46(1):218-227. |
42 | LI D , GUO Z . Stable and self-healing superhydrophobic MnO2@fabrics: applications in self-cleaning, oil/water separation and wear resistance[J]. Journal of Colloid & Interface Science, 2017, 503:124-130. |
43 | XUE C H , BAI X , JIA S T . Robust, self-healing superhydrophobic fabrics prepared by one-step coating of PDMS and octadecylamine[J]. Scientific Reports, 2016, 6:27262. |
44 | CHEN K , ZHOU S , WU L . Facile fabrication of self-repairing superhydrophobic coatings[J]. Chemical Communications, 2014, 50(80):11891-11894. |
45 | CHEN K , ZHOU S , YANG S , et al . Fabrication of all-water-vased self-repairing superhydrophobic coatings based on UV-responsive microcapsules[J]. Advanced Functional Materials, 2015, 25(7):1035-1041. |
46 | WU L , CONG Y , CHEN K , et al . Synthesis of pH and UV dual-responsive microcapsules with high loading capacity and their application for self-healing hydrophobic coatings[J]. Journal of Materials Chemistry A, 2015, 3(37):19093-19099. |
47 | CHEN K , ZHOU S . Fabrication of ultraviolet-responsive microcapsules via Pickering emulsion polymerization using modified nano-silica/nano-titania as Pickering agents[J]. RSC Advances, 2015, 5(18):13850-13856. |
48 | ZHU D , LU X , LU Q . Electrically conductive PEDOT coating with self-healingsuperhydrophobicity[J]. Langmuir, 2014, 30(16):4671-4677. |
49 | LIU Q , WANG X , YU B , et al . Self-healing surface hydrophobicity by consecutive release of hydrophobic molecules from mesoporous silica[J]. Langmuir, 2012, 28(13):5845-5849. |
50 | LIU Y , LIU Y , HU H , et al . Mechanically induced self-healing superhydrophobicity[J]. Journal of Physical Chemistry C, 2015, 119(13):7109-7114. |
51 | YIN X , WANG D , BO Y , et al . Rabbit hair regenerative superhydrophobicity[J]. RSC Advances, 2013, 4(7):3611-3614. |
52 | DENG X , MAMMEN L , BUTT H J , et al . Candle soot as a template for a transparent robust superamphiphobic coating[J]. Science, 2012, 335(6064):67-70. |
53 | JIN H , TIAN X , IKKALA O , et al . Preservation of superhydrophobic and superoleophobic properties upon wear damage[J]. ACS Applied Materials & Interfaces, 2013, 5(3):485-488. |
54 | DING C D , LIU Y , WANG M D , et al . Self-healing, superhydrophobic coating based on mechanized silica nanoparticles for reliable protection of magnesium alloys[J]. Journal of Materials Chemistry A, 2016, 4(21):8041-8052. |
55 | CHEN T , YANG N , FU J . Controlled release of cargo molecules from hollow mesoporous silica nanoparticles based on acid and base dual-responsive cucurbit[7]uril pseudorotaxanes[J]. Chemical Communications, 2013, 49(58):6555-6557. |
56 | YAMANAKA S A , DUNN B , VALENTINE J S , et al . Nicotinamide adenine dinucleotide phosphate fluorescence and absorption monitoring of enzymic activity in silicate sol-gels for chemical sensing applications[J]. Journal of the American Chemical Society, 1995, 117(35):9095-9096. |
57 | KOO H Y, LEE H J, KIM J K, et al . UV-triggered encapsulation and release from polyelectrolyte microcapsules decorated with photoacid generators[J]. Journal of Materials Chemistry, 2010, 20(19):3932-3937. |
58 | LONG Y , LIU C , ZHAO B , et al . Bio-inspired controlled release through compression-relaxation cycles of microcapsules[J]. NPG Asia Materials, 2015, 7:e148. |
59 | LI J , LIANG J , LI L , et al . Healable capacitive touch screen sensors based on transparent composite electrodes comprising silver nanowires and a furan/maleimide Diels-Alder cycloaddition polymer[J]. ACS Nano, 2014, 8(12):12874-12882. |
60 | LAI J , MEI J , JIA X , et al . A stiff and healable polymer based on dynamic-covalent boroxine bonds[J]. Advanced Materials, 2016, 28(37):8277-8282. |
61 | JEON I , CUI J , ILLEPERUMA W R K , et al . Extremely stretchable and fast self-healing hydrogels[J]. Advanced Materials, 2016, 28(23):4678-4683. |
62 | HARING M , DIAZ D D . Supramolecular metallogels with bulk self-healing properties prepared by in situ metal complexation[J]. Chemical Communications, 2016, 52(89):13068-13081. |
63 | LUO F , SUN T L , NAKAJIMA T , et al . Oppositely charged polyelectrolytes form tough, self-healing, and rebuildable hydrogels[J]. Advanced Materials, 2015, 27(17):2722-2727. |
64 | PURETSKIY N , STOYCHEV G , SYNYTSKA A , et al . Surfaces with self-repairable ultrahydrophobicity based on self-organizing freely floating colloidal particles[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2012, 28(8):3679-3682. |
65 | MANNA U , LYNN D M . Restoration of superhydrophobicity in crushed polymer films by treatment with water: self-healing and recovery of damaged topographic features aided by an unlikely source[J]. Advanced Materials, 2013, 25(36):5104-5108. |
66 | LV T , CHENG Z , ZHANG E , et al . Self-restoration of superhydrophobicity on shape memory polymer arrays with both crushed microstructure and damaged surface chemistry[J]. Small, 2017, 13(4): 1503402. |
67 | LI B , ZHANG J . Polysiloxane/multiwalled carbon nanotubes nanocomposites and their applications as ultrastable, healable and superhydrophobic coatings[J]. Carbon, 2015, 93:648-658. |
[1] | 席慧敏, 钱坤, 俞科静, 李杰, 张中威, 熊自明, 张耀良. 基于二硫键和氢键的自修复聚氨酯弹性体的制备、改性及其应用[J]. 化工进展, 2023, 42(2): 934-943. |
[2] | 辛华, 彭琪, 李阳帆, 张岩, 陈悦, 李新琦. 含氟聚氨酯二甲基丙烯酸酯为芯材的微胶囊制备及自修复性能[J]. 化工进展, 2023, 42(10): 5406-5413. |
[3] | 雷瑜, 田蒙蒙, 张心亚, 蒋翔. 超疏水表面自修复及应用的研究进展[J]. 化工进展, 2021, 40(5): 2624-2633. |
[4] | 王玉龙, 胡国胜, 张静婷, 白静静, 吕秦牛, 李振中. 基于双硫键和氢键协效的高性能自修复聚氨酯脲的研制[J]. 化工进展, 2021, 40(1): 324-331. |
[5] | 武思蕊,李斌,赵梁成,李仲明. 磁性石墨烯/聚氨酯柔性复合材料的制备及自修复效能[J]. 化工进展, 2020, 39(4): 1422-1430. |
[6] | 鲍艳, 畅菁香. 耐久型超疏水表面的研究进展[J]. 化工进展, 2020, 39(12): 5148-5160. |
[7] | 童晓梅, 郝芹芹, 闫子英, 郑博学. 硅烷改性环氧树脂自修复微胶囊的制备及应用[J]. 化工进展, 2018, 37(09): 3555-3561. |
[8] | 龚桂胜, 刘景勃, 钟玉鹏, 林强, 张发爱. 聚乙烯醇水凝胶自修复性能[J]. 化工进展, 2016, 35(08): 2507-2512. |
[9] | 冯建中, 明耀强, 张宇帆, 郭浩槟, 黄凯鑫, 胡剑峰, 瞿金清. 异氰酸酯胶囊型自修复高分子材料研究进展[J]. 化工进展, 2016, 35(01): 175-181. |
[10] | 李海燕,张丽冰,李杰,王俊. 外援型自修复聚合物材料研究进展[J]. 化工进展, 2014, 33(01): 133-139. |
[11] | 李海燕,张丽冰,王 俊. 本征型自修复聚合物材料研究进展[J]. 化工进展, 2012, 31(07): 1549-1554. |
[12] | 乔吉超,胡小玲,管 萍. 自修复聚合物材料用微胶囊的研究进展 [J]. 化工进展, 2006, 25(12): 1405-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |