化工进展 ›› 2019, Vol. 38 ›› Issue (06): 2682-2696.DOI: 10.16085/j.issn.1000-6613.2018-1817
陈玉川1(),史博会1(),李文庆2,黄芳飞3(),吕晓方4,柳扬1,吴海浩1,宫敬1
收稿日期:
2018-09-10
出版日期:
2019-06-05
发布日期:
2019-06-05
通讯作者:
史博会,黄芳飞
作者简介:
陈玉川(1993—),男,博士研究生,研究方向为天然气水合物浆液多相流及深海油气流动安全保障。E-mail:<email>jshzcyc@163.com</email>。
基金资助:
Yuchuan CHEN1(),Bohui SHI1(),Wenqing LI2,Fangfei HUANG3(),Xiaofang LÜ4,Yang LIU1,Haihao WU1,Jing GONG1
Received:
2018-09-10
Online:
2019-06-05
Published:
2019-06-05
Contact:
Bohui SHI,Fangfei HUANG
摘要:
水合物浆液的黏度及非牛顿特性是水合物流动安全保障的重要参数,其研究对于水合物风险控制技术以及深水油气管线输送的安全预警具有重要的意义。本文介绍了用于水合物生成、黏度及非牛顿特性研究的流变仪类型以及在流变仪内进行水合物生成的实验材料;总结了水合物生成影响因素对水合物生成过程中黏度的影响规律,梳理分析了水合物浆液黏度定量表征模型;从剪切稀释性、触变性、屈服特性以及黏弹性4个方面总结了水合物浆液非牛顿特性的研究成果。总体而言,水合物浆液黏度及非牛顿特性研究存在较强的体系依赖性,构建的水合物浆液黏度模型所考虑的因素各异、普适性不高。最后,本文给出了今后在流变仪内开展水合物实验及模型研究的方向和建议:水合物微观结构参数和浆液流变参数的耦合研究;综合考虑水合物浆液非牛顿特性的黏度预测模型;水合物浆液黏度及非牛顿特性和水合物堵管理论的结合。
中图分类号:
陈玉川, 史博会, 李文庆, 黄芳飞, 吕晓方, 柳扬, 吴海浩, 宫敬. 水合物浆液非牛顿特性与黏度模型研究进展[J]. 化工进展, 2019, 38(06): 2682-2696.
Yuchuan CHEN, Bohui SHI, Wenqing LI, Fangfei HUANG, Xiaofang LÜ, Yang LIU, Haihao WU, Jing GONG. Progress of the non-Newtonian properties of hydrate slurry and viscosity model[J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2682-2696.
研究者 | 流变仪类型 | 夹具类型 | 所测参数 | 温控范围/℃ | 最高承受压力 /MPa |
---|---|---|---|---|---|
Zylyftari等[ | ARES-G2(控应变) | 同轴圆筒 (外筒直径34mm; 内筒直径32mm; 内筒高度33.5mm) | 黏度 | -40~180 | 0.1 |
Ahuja等[ | AR 2000ex(控应力) | 同轴圆筒/叶片式搅拌桨 | 黏度、储能模量、 耗能模量、柔量、屈服应力 | -20~150 | 0.1 |
Webb等[ | AR-G2(控应力/应变) | 同轴圆筒 (外筒直径28mm; 内筒直径26mm) | 黏度、屈服应力 | -25~150 | 13.78 |
Qin等[ | DHR(控应力) | 叶片式搅拌桨 | 黏度、屈服应力 | -10~150 | 13.8 |
Leopercio等[ | DHR-3(控应力) | 平板 | 储能模量、耗能模量、 屈服应变 | -10~150 | 0.1 |
表1 用以生成水合物或浆液的流变仪及其基础参数
研究者 | 流变仪类型 | 夹具类型 | 所测参数 | 温控范围/℃ | 最高承受压力 /MPa |
---|---|---|---|---|---|
Zylyftari等[ | ARES-G2(控应变) | 同轴圆筒 (外筒直径34mm; 内筒直径32mm; 内筒高度33.5mm) | 黏度 | -40~180 | 0.1 |
Ahuja等[ | AR 2000ex(控应力) | 同轴圆筒/叶片式搅拌桨 | 黏度、储能模量、 耗能模量、柔量、屈服应力 | -20~150 | 0.1 |
Webb等[ | AR-G2(控应力/应变) | 同轴圆筒 (外筒直径28mm; 内筒直径26mm) | 黏度、屈服应力 | -25~150 | 13.78 |
Qin等[ | DHR(控应力) | 叶片式搅拌桨 | 黏度、屈服应力 | -10~150 | 13.8 |
Leopercio等[ | DHR-3(控应力) | 平板 | 储能模量、耗能模量、 屈服应变 | -10~150 | 0.1 |
研究者 | 生成水合物 | 油相 | 表面活性剂 | 含水率/% | 初始压力 /MPa | 温度/℃ | 剪切率 /s-1 |
---|---|---|---|---|---|---|---|
Ahuja等[ | 环戊烷水合物 | 煤油+聚三氟氯乙烯树脂+环戊烷 | Span 80 | 40 | 0.1 | -5~-10 | 100 |
Zylyftari等[ | 环戊烷水合物 | 环戊烷+异辛烷+轻矿物油+ 聚三氟氯乙烯树脂 | Span 80 | 40 | 0.1 | -7 | 100 |
Zylyftari等[ | 环戊烷水合物 | 轻矿物油+聚三氟氯乙烯树脂+ 环戊烷 | Span 80 | 40 | 0.1 | -13 | 100 |
Zylyftari等[ | 环戊烷水合物 | 环戊烷+异辛烷+轻矿物油+ 聚三氟氯乙烯树脂 | Span 80 | 40 | 0.1 | -3.6 | 100 |
Ahuja等[ | 环戊烷水合物 | 轻矿物油+聚三氟氯乙烯树脂+ 环戊烷 | Span 80 | 16~24 | 0.1 | -2 | 100 |
Karanjkar等[ | 环戊烷水合物 | 轻矿物油+聚三氟氯乙烯树脂+ 环戊烷 | Span 80 | 10~45 | 0.1 | -2 | 10 |
Webb等[ | 甲烷水合物 | 西非原油 | — | 0~50 | 13.8 | 0 | 100 |
Webb等[ | 甲烷水合物 | 矿物油70t | 二-乙基己基琥珀酸酯 磺酸钠+Span 80 | 10~40 | 10.335 | 0 | 100 |
Qin等[ | 甲烷水合物 | 原油 | — | 5~30 | 10 | 1 | 43.5 |
Zylyftari等[ | 丙烷水合物 | 矿物油+聚三氟氯乙烯树脂 +环戊烷 | Span 80 | 40 | 0.4 | -10~0.5 | 50 |
Webb等[ | 甲烷水合物 | 十二烷 | 二-乙基己基琥珀酸酯磺酸钠 | 5~30 | 10.39 | 0 | 100 |
Majid等[ | 甲烷水合物 | 矿物油350t | 二-乙基己基琥珀酸酯 磺酸钠+Span 80 | 0~30 | 10.35 | 1 | 50rad/s |
Rensing等[ | 甲烷水合物 | 西非原油 | — | 25/30 | 10.35 | 0 | 100 |
表2 流变仪内水合物生成的实验材料及实验条件
研究者 | 生成水合物 | 油相 | 表面活性剂 | 含水率/% | 初始压力 /MPa | 温度/℃ | 剪切率 /s-1 |
---|---|---|---|---|---|---|---|
Ahuja等[ | 环戊烷水合物 | 煤油+聚三氟氯乙烯树脂+环戊烷 | Span 80 | 40 | 0.1 | -5~-10 | 100 |
Zylyftari等[ | 环戊烷水合物 | 环戊烷+异辛烷+轻矿物油+ 聚三氟氯乙烯树脂 | Span 80 | 40 | 0.1 | -7 | 100 |
Zylyftari等[ | 环戊烷水合物 | 轻矿物油+聚三氟氯乙烯树脂+ 环戊烷 | Span 80 | 40 | 0.1 | -13 | 100 |
Zylyftari等[ | 环戊烷水合物 | 环戊烷+异辛烷+轻矿物油+ 聚三氟氯乙烯树脂 | Span 80 | 40 | 0.1 | -3.6 | 100 |
Ahuja等[ | 环戊烷水合物 | 轻矿物油+聚三氟氯乙烯树脂+ 环戊烷 | Span 80 | 16~24 | 0.1 | -2 | 100 |
Karanjkar等[ | 环戊烷水合物 | 轻矿物油+聚三氟氯乙烯树脂+ 环戊烷 | Span 80 | 10~45 | 0.1 | -2 | 10 |
Webb等[ | 甲烷水合物 | 西非原油 | — | 0~50 | 13.8 | 0 | 100 |
Webb等[ | 甲烷水合物 | 矿物油70t | 二-乙基己基琥珀酸酯 磺酸钠+Span 80 | 10~40 | 10.335 | 0 | 100 |
Qin等[ | 甲烷水合物 | 原油 | — | 5~30 | 10 | 1 | 43.5 |
Zylyftari等[ | 丙烷水合物 | 矿物油+聚三氟氯乙烯树脂 +环戊烷 | Span 80 | 40 | 0.4 | -10~0.5 | 50 |
Webb等[ | 甲烷水合物 | 十二烷 | 二-乙基己基琥珀酸酯磺酸钠 | 5~30 | 10.39 | 0 | 100 |
Majid等[ | 甲烷水合物 | 矿物油350t | 二-乙基己基琥珀酸酯 磺酸钠+Span 80 | 0~30 | 10.35 | 1 | 50rad/s |
Rensing等[ | 甲烷水合物 | 西非原油 | — | 25/30 | 10.35 | 0 | 100 |
研究者 | 实验装置 | 生成水合物 | 测量方法 | 含水率/% | 实验温度/K | 初始压力/MPa | 屈服应力/Pa |
---|---|---|---|---|---|---|---|
Ahuja等[ | 常压流变仪 | 环戊烷水合物 | 最大弹性应力 | 40 | 266.15 | 0.1 | 4~1105 |
Zylyftari等[ | 常压流变仪 | 环戊烷水合物 | 剪切应力扫描 | 40 | 266.15 | 0.1 | 0~145 |
Ahuja等[ | 常压流变仪 | 环戊烷水合物 | 连续应力震荡扫描 | 18 | 271.15 | 0.1 | 281±138 |
震荡应力阶跃扫描 | 212±38 | ||||||
最大弹性应力 | 270±162 | ||||||
蠕变 | 187.5±12.5 | ||||||
剪切速率扫描 | 162 | ||||||
Webb等[ | 高压流变仪 | 甲烷水合物 | 剪切应力扫描 | 10 | 273.15 | 10.4 | 3 |
20 | 273.15 | 10.4 | 11 | ||||
30 | 273.15 | 10.4 | 18 | ||||
40 | 273.15 | 10.4 | 21 | ||||
30 | 277.15 | 10.4 | 110 | ||||
30 | 279.15 | 10.4 | 30 | ||||
30 | 273.15 | 5.2 | 380 | ||||
30 | 273.15 | 6.9 | 75 | ||||
30 | 273.15 | 8.3 | 65 | ||||
Qin等[ | 高压流变仪 | 甲烷水合物 | 剪切应力扫描 | 5 | 278.15 | 10 | 3 |
10 | 278.15 | 10 | 11 | ||||
20 | 278.15 | 10 | 19 | ||||
30 | 278.15 | 10 | 25 | ||||
Webb等[ | 高压流变仪 | 甲烷水合物 | 剪切应力扫描 | 5~30 | 273.15 | 10.4 | 1~20 |
表3 水合物浆液屈服应力测量结果
研究者 | 实验装置 | 生成水合物 | 测量方法 | 含水率/% | 实验温度/K | 初始压力/MPa | 屈服应力/Pa |
---|---|---|---|---|---|---|---|
Ahuja等[ | 常压流变仪 | 环戊烷水合物 | 最大弹性应力 | 40 | 266.15 | 0.1 | 4~1105 |
Zylyftari等[ | 常压流变仪 | 环戊烷水合物 | 剪切应力扫描 | 40 | 266.15 | 0.1 | 0~145 |
Ahuja等[ | 常压流变仪 | 环戊烷水合物 | 连续应力震荡扫描 | 18 | 271.15 | 0.1 | 281±138 |
震荡应力阶跃扫描 | 212±38 | ||||||
最大弹性应力 | 270±162 | ||||||
蠕变 | 187.5±12.5 | ||||||
剪切速率扫描 | 162 | ||||||
Webb等[ | 高压流变仪 | 甲烷水合物 | 剪切应力扫描 | 10 | 273.15 | 10.4 | 3 |
20 | 273.15 | 10.4 | 11 | ||||
30 | 273.15 | 10.4 | 18 | ||||
40 | 273.15 | 10.4 | 21 | ||||
30 | 277.15 | 10.4 | 110 | ||||
30 | 279.15 | 10.4 | 30 | ||||
30 | 273.15 | 5.2 | 380 | ||||
30 | 273.15 | 6.9 | 75 | ||||
30 | 273.15 | 8.3 | 65 | ||||
Qin等[ | 高压流变仪 | 甲烷水合物 | 剪切应力扫描 | 5 | 278.15 | 10 | 3 |
10 | 278.15 | 10 | 11 | ||||
20 | 278.15 | 10 | 19 | ||||
30 | 278.15 | 10 | 25 | ||||
Webb等[ | 高压流变仪 | 甲烷水合物 | 剪切应力扫描 | 5~30 | 273.15 | 10.4 | 1~20 |
1 | 谢彬,张爱霞,段梦兰 . 中国南海深水油气田开发工程模式及平台选型[J]. 石油学报,2007,28(1):115-118. |
XIE B , ZHANG A X , DUAN M L . Engineering mode and platform selection for deepwater oilfield development in South China Sea[J]. Acta Petrolei Sinica,2007,28(1):115-118. | |
2 | SLOAN E D ,KOH C A . Clathrate hydrates of natural gases[M]. 3rd ed. New York: CRC Press,2007. |
3 | SLOAN E D ,KOH C A,SUM A K . Natural gas hydrates in flow assurance[M]. Burlington:Gulf Professional Publishing,2010. |
4 | 闫柯乐,邹兵,姜素霞,等 . 水合物浆液流动与流变特性研究进展[J]. 化工进展,2015,34(7):1817-1825. |
YAN K L , ZHOU B , JIANG S X ,et al . Review on flow characteristics and rheological properties of hydrate slurry[J]. Chemical Industry and Engineering Progress,2015,34(7):1817-1825. | |
5 | 王书淼,吴明,王国付,等 . 管内天然气水合物抑制剂的应用研究[J]. 油气储运,2006,25(2):43-46. |
WANG S M , WU M , WANG G F ,et al . Application research of natural gas hydrate inhibitor in pipelines[J]. Oil & Gas Storage and Transportation,2006,25(2):43-46. | |
6 | 丁麟,史博会,吕晓方,等 . 天然气水合物的生成对浆液流动稳定性影响综述[J]. 化工进展,2016,35(10):3118-3128. |
DING L , SHI B H , LÜ X F ,et al . Investigation on the effects of natural gas hydrate formation on slurry flow stability[J]. Chemical Industry and Engineering Progress,2016,35(10):3118-3128. | |
7 | SUN M W , FIROOZABADI A . New surfactant for hydrate anti-agglomeration in hydrocarbon flowlines and seabed oil capture[J]. Journal of Colloid and Interface Science,2013,402:312-319. |
8 | HUO Z , FREER E , LAMAR M ,et al . Hydrate plug prevention by anti-agglomeration[J]. Chemical Engineering Science,2001,56(17):4979-4991. |
9 | MAXIMILIAN A , KARIN N , AXEL S . Grafted polymers as gas hydrate inhibitors:US6867262[P]. 2005-03-15. |
10 | KELLAND M A , SVARTAAS T M , OVSTHUS J ,et al . Studies on some zwitterionic surfactant gas hydrate anti-agglomerants[J]. Chemical Engineering Science,2006,61(12):4048-4059. |
11 | KELLAND M A , SVARTAAS T M , OVSTHUS J ,et al . Studies on some alkylamide surfactant gas hydrate anti-agglomerants[J]. Chemical Engineering Science,2006,61(13):4290-4298. |
12 | KELLAND M A , SVARTAAS T M , ANDERSEN L D . Gas hydrate anti-agglomerant properties of polypropoxylates and some other demulsifiers[J]. Journal of Petroleum Science and Engineering,2009,64(1/2/3/4):1-10. |
13 | PENG B Z , CHEN J , SUN C Y ,et al . Flow characteristics and morphology of hydrate slurry formed from (natural gas + diesel oil/condensate oil + water) system containing anti-agglomerant[J]. Chemical Engineering Science,2012,84:333-344. |
14 | LI X , NEGADI L , FIROOZABADI A . Anti-agglomeration in cyclopentane hydrates from bio- and co-surfactants[J]. Energy & Fuels,2010,24(9):4937-4943. |
15 | YAN K L , SUN C Y , CHEN J ,et al . Flow characteristics and rheological properties of natural gas hydrate slurry with presence of anti-agglomerant in a flow loop apparatus[J]. Chemical Engineering Science,2014,106:99-108. |
16 | CHEN J , SUN C Y , PENG B Z ,et al . Screening and compounding of gas hydrate anti-agglomerants from commercial additives through morphology observation[J]. Energy & Fuels,2013,27(5):2488-2496. |
17 | WANG W C , FAN S S , LIANG D Q , et al . A model for estimating flow assurance of hydrate slurry in pipelines[J]. Journal of Energy Chemistry,2010,19(4):380-384. |
18 | DELAHAYE A , FOURNAISON L , MARINHAS S , et al . Rheological study of CO2 hydrate slurry in a dynamic loop applied to secondary refrigeration[J]. Chemical Engineering Science,2008,63(13):3551−3559. |
19 | DELAHAYE A , FOURNAISON L , JERBI S , et al . Rheological properties of CO2 hydrate slurry flow in the presence of additives[J]. Industrial & Engineering Chemistry Research,2011,50(13):8344−8353. |
20 | FIDEL-DUFOUR A , GRUY F , HERRI J M . Rheology of methane hydrate slurries during their crystallization in a water in dodecane emulsion under flowing[J]. Chemical Engineering Science,2006,61(2):505-515. |
21 | SUZUKI H , ITOTAGAWA T , INDARTONO Y S ,et al . Rheological characteristics of trimethylolethane hydrate slurry treated with drag-reducing surfactants[J]. Rheologica Acta,2006,46(2):287-295. |
22 | AKHFASH M , BOXALL J A , AMAN Z M ,et al . Hydrate formation and particle distributions in gas-water systems[J]. Chemical Engineering Science,2013,104:177-188. |
23 | AMAN Z , AKHFASH M , JOHNS M ,et al . Methane hydrate bed formation in a visual autoclave: cold restart and Reynolds number dependence[J]. Journal of Chemical & Engineering Data,2015,60(2):409-417. |
24 | AKHFASH M , AMAN Z M , DU J W ,et al . Microscale detection of hydrate blockage onset in high-pressure gas-water systems[J]. Energy & Fuels,2017,3(5):4875-4885. |
25 | AHUJA A , ZYLYFTARI G , MORRIS J F . Calorimetric and rheological studies on cyclopentane hydrate-forming water-in-kerosene emulsions[J]. Journal of Chemical and Engineering Data,2015,60(2):362-368. |
26 | ZYLYFTARI G , AHUJA A , MORRIS J F . Modeling oilfield emulsions: comparison of cyclopentane hydrate and ice[J]. Energy & Fuels,2015,29(10):6286-6295. |
27 | SILVA P H D L , NACCACHE M F , MENDES P R D S ,et al . Rheology of tetrahydrofuran hydrate slurries[J]. Energy & Fuels,2017,31(12):14385-14392 |
28 | SHI B H , CHAI S , WANG L Y ,et al . Viscosity investigation of natural gas hydrate slurries with anti-agglomerants additives[J]. Fuel,2016,185:323-338. |
29 | SHI B H , CHAI S , DING L ,et al . An investigation on gas hydrate formation and slurry viscosity in the presence of wax crystals[J]. AIChE Journal,2018,64(9):3229-3553. |
30 | 史博会,柴帅,柳杨,等 . 含蜡晶天然气水合物浆液黏度的影响因素[J]. 天然气工业,2017,37(5):97-105. |
SHI B H , CHAI S , LIU Y ,et al . Factors influencing the viscosity of natural gas hydrate slurry with wax crystal[J]. Natural Gas Industry,2017,37(5):97-105. | |
31 | 柴帅 . 水合物浆液流变特性实验研究[D].北京:中国石油大学(北京),2017. |
CHAI S . Experimental study on rheological properties of hydrates slurry[D]. Beijing:China University of Petroleum(Beijing),2017. | |
32 | 王麟雁 . 水合物浆液黏度特性实验研究[D].北京:中国石油大学(北京),2015. |
WANG L Y . Experimental study on viscosity properties of hydrate slurry[D]. Beijing:China University of Petroleum(Beijing),2015. | |
33 | 刘慧姝 . 高压系统浆体流变特性实验研究[D].北京:中国石油大学(北京),2014. |
LIU H S . Experimental high pressure rheology measurement of hydrate nature gas hydrate slurry[D]. Beijing:China University of Petroleum(Beijing),2014. | |
34 | MEMON A ,NG H J . Effectiveness of low-dosage hydrate inhibitors and their rheological behavior for gas condensate/water systems[J]. Journal of Chemical and Engineering Data,2015,60(2):293-298. |
35 | WEBB E B ,KOH C A, LIBERATORE M W . High pressure rheology of hydrate slurries formed from water-in-mineral oil emulsions[J]. Industrial and Engineering Chemistry Research,2014,53(17):6998-7007. |
36 | WEBB E B , RENSING P J ,KOH C A,et al . High-pressure rheology of hydrate slurries formed from water-in-oil emulsions[J]. Energy & Fuels,2012,26(6):3504-3509. |
37 | QIN Y H , AMAN Z M , PICKERING P F ,et al . High pressure rheological measurements of gas hydrate-in-oil slurries[J]. Journal of Non-Newtonian Fluid Mechanics,2017,248:40-49. |
38 | ZYLYFTARI G ,LEE J W, MORRIS J F . Salt effects on thermodynamic and rheological properties of hydrate forming emulsions[J]. Chemical Engineering Science,2013,95(3):148-160. |
39 | ZYLYFTARI G , AHUJA A , MORRIS J F . Nucleation of cyclopentane hydrate by ice studied by morphology and rheology[J]. Chemical Engineering Science,2014,116:497-507. |
40 | AHUJA A , ZYLIYFTARI G , MORRIS J F . Yield stress measurements of cyclopentane hydrate slurry[J]. Journal of Non-Newtonian Fluid Mechanics,2015,220:116-125. |
41 | KARANJKAR P U , AHUJA A , ZYLYFTARI G , et al . Rheology of cyclopentane hydrate slurry in a model oil-continuous emulsion[J]. Rheologica Acta,2016,55(3):1-9. |
42 | WEBB E B ,KOH C A, LIBERATORE M W . Rheological properties of methane hydrate slurries formed from AOT + water + oil microemulsions[J]. Langmuir the ACS Journal of Surfaces & Colloids,2013,29(35):10997-11004. |
43 | MAJID A , WU D T ,KOH C A . New in-situ measurements of the viscosity of gas clathrate hydrate slurries formed from model water-in-oil emulsions[J]. Langmuir,2017,33(42):11436-11445. |
44 | WEBB E B , RENSING P J ,KOH C A,et al . High pressure rheometer for in situ formation and characterization of methane hydrates[J]. Review of Scientific Instruments,2012,83(1):353. |
45 | LEOPERCIO B C , MENDES P R D S , FULLER G G . The growth kinetics and mechanics of hydrate films by interfacial rheology[J]. Langmuir,2016,32(17):4203-4209. |
46 | CHARIN R M ,SUM A K . Steady-state and transient studies of gas hydrates formation in non-emulsifying oil systems[J]. Energy & Fuels,2017,31(3):2548−2556. |
47 | AHUJA A . Hydrate forming emulsion: rheology and morphology analysis for flow assurance[D]. New York:The City University of New York,2015. |
48 | MAJID A A A . An investigation on the viscosity and transportability of methane hydrate slurries using a high pressure rheometer and flowloop[D]. Golden,Colorado:Colorado School of Mines,2015. |
49 | RENSING P J , LIBERATORE M W , TONMUKAYAKUL N , et al . In situ formation and evolution of gas hydrates in water-in-oil emulsions using pressure rheometry[C]// AIP Conference Proceedings,2008,1027(1):869-871. |
50 | PANDEY G , LINGA P , SANGWAI J S . High pressure rheology of gas hydrate formed from multiphase systems using modified couette rheometer[J]. Review of Scientific Instruments,2017,88(2):1-10. |
51 | AHUJA A , IQBAL A , IQBAL M ,et al . Rheology of hydrate-forming emulsions stabilized by surfactant and hydrophobic silica nanoparticles[J]. Energy & Fuels,2018,32(5):5877−5884. |
52 | SANDOVAL G A B , SOARES E J , THOMPSON R L ,et al . Analysis of CO2 hydrates in crude oils from a rheological point of view[J]. Energy & Fuels,2018,32(3):2733-2741. |
53 | RAMAN A K Y , KOTEESWARAN S , VENKATARAMANI D ,et al . A comparison of the rheological behavior of hydrate forming emulsions stabilized using either solid particles or a surfactant[J]. Fuel,2016,179:141-149. |
54 | BARNES H A . Thixotropy-a review[J]. Journal of Non-Newtonian Fluid Mechanics. 1997,70(1/2):1-33. |
55 | 滕厚兴,张劲军 . 含蜡原油触变模型研究现状[J]. 油气储运,2013,32(9):923-938. |
TENG H X , ZHANG J J . Review of thixotropy model of waxy crude oil[J]. Oil & Gas Storage and Transportation,2013,32(9):923-938. | |
56 | RENSING P J , LIBERATORE M W , SUMUM A K ,et al . Viscosity and yield stresses of ice slurries formed in water-in-oil emulsions[J]. Journal of Non-Newtonian Fluid Mechanics,2011,166(14):859-866. |
57 | 丁垚 . 水合物悬浮液流变性研究[D]. 2010,北京:中国石油大学(北京). |
DING Y . Study on the rheological properties of hydrate suspensions[D]. Beijing:China University of Petroleum(Beijing),2010. | |
58 | 雍宇 . 含蜡体系水合物生成及浆液流动实验研究[D]. 北京:中国石油大学(北京), 2018. |
YONG Y . Experimental study on hydrate formation and slurry flow in waxy systems[D]. Beijing:China University of Petroleum(Beijing),2018. | |
59 | WEBB E B . Rheology of methane hydrate slurries formed from water-in-oil emulsions[D]. Golden,Colorado:Colorado School of Mines,2014. |
60 | KRIEGER I M , DOUGHERTY T J . A mechanism for non-Newtonian flow in suspensions of rigid spheres[J]. Transactions of the Society of Rheology, 2000,3(1):137-152. |
61 | MOONEY M . The viscosity of a concentrated suspension of spherical particles[J]. Journal of Colloid Science,1951,6(2):162-170. |
62 | ROSCOE R . The viscosity of suspensions of rigid spheres[J]. British Journal of Applied Physics,1952,3(8):267. |
63 | BRINKMAN H C . The viscosity of concentrated suspensions and solutions[J]. Journal of Chemical Physics,2004,20(4):571-571. |
64 | CAMARGO R , PALERMO T . Rheological properties of hydrate suspensions in an asphaltenic crude oil[C]// 4th International Conference on Gas Hydrates,Yokohama,Japan,2002. |
65 | MAJID A A A , WU D T ,KOH C A . A perspective on rheological studies of gas hydrate slurry properties[J]. Engineering,2018,4(3):321-329. |
66 | SUDDUTH R D . A generalized model to predict the viscosity of solutions with suspended particles. III. Effects of particle interaction and particle size distribution[J]. Journal of Applied Polymer Science,2010,50(1):123-147. |
67 | KRIEGER I M , DOUGHERTY T J . A mechanism for non-Newtonian flow in suspension of rigid spheres[J]. Journal of Rheology, 1959, 3(1):137-152. |
68 | MORADPOUR H , CHAPOY A , TOHIDI B . Bimodal model for predicting the emulsion-hydrate mixture viscosity in high water cut systems[J]. Fuel,2011,90(11):3343-3351. |
[1] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[2] | 王谨航, 何勇, 史伶俐, 龙臻, 梁德青. 气体水合物阻聚剂研究进展[J]. 化工进展, 2023, 42(9): 4587-4602. |
[3] | 董佳宇, 王斯民. 超声强化对二甲苯结晶特性及调控机理实验[J]. 化工进展, 2023, 42(9): 4504-4513. |
[4] | 李由, 吴越, 钟禹, 林琦璇, 任俊莉. 酸性熔盐水合物预处理麦秆高效制备木糖及其对酶解效率的影响[J]. 化工进展, 2023, 42(9): 4974-4983. |
[5] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
[6] | 陈蔚阳, 宋欣, 殷亚然, 张先明, 朱春英, 付涛涛, 马友光. 矩形微通道内液相黏度对气泡界面的作用机制[J]. 化工进展, 2023, 42(7): 3468-3477. |
[7] | 谢志伟, 吴张永, 朱启晨, 蒋佳骏, 梁天祥, 刘振阳. 植物油基Ni0.5Zn0.5Fe2O4磁流体的黏度特性及磁黏特性[J]. 化工进展, 2023, 42(7): 3623-3633. |
[8] | 张凯, 吕秋楠, 李刚, 李小森, 莫家媚. 南海海泥中甲烷水合物的形貌及赋存特性[J]. 化工进展, 2023, 42(7): 3865-3874. |
[9] | 孙征楠, 李洪晶, 荆国林, 张福宁, 颜飚, 刘晓燕. EVA及其改性聚合物在原油降凝剂领域的应用[J]. 化工进展, 2023, 42(6): 2987-2998. |
[10] | 杨扬, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂OP-13促进HCFC-141b水合物生成[J]. 化工进展, 2023, 42(6): 2854-2859. |
[11] | 刘佳, 梁德青, 李君慧, 林德才, 吴思婷, 卢富勤. 油水体系水合物浆液流动保障研究进展[J]. 化工进展, 2023, 42(4): 1739-1759. |
[12] | 李光文, 华渠成, 黄作鑫, 达志坚. 聚甲基丙烯酸酯类黏度指数改进剂的研究进展[J]. 化工进展, 2023, 42(3): 1562-1571. |
[13] | 王唯, 张东旭, 李遵照, 王晓霖, 黄启玉. 油包水乳状液体系中水合物生长行为研究进展[J]. 化工进展, 2023, 42(3): 1155-1166. |
[14] | 康宇, 苟泽念. 氨基酸和DTAC对CO2水合分离动力学影响[J]. 化工进展, 2023, 42(10): 5067-5075. |
[15] | 朱启晨, 吴张永, 王志强, 蒋佳骏, 李翔. 低温下硅油基纳米磁流体沉降稳定性与黏度特性[J]. 化工进展, 2023, 42(10): 5101-5110. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |