化工进展 ›› 2019, Vol. 38 ›› Issue (04): 1961-1969.DOI: 10.16085/j.issn.1000-6613.2018-1478
收稿日期:
2018-07-16
修回日期:
2018-11-05
出版日期:
2019-04-05
发布日期:
2019-04-05
作者简介:
<named-content content-type="corresp-name">范峥</named-content>(1982—),男,博士,副教授,研究方向为油气加工过程腐蚀控制。E-mail:<email>fanzheng@xsyu.edu.cn</email>。
基金资助:
Zheng FAN1(),Zhao LIU1,Xiaoyan JING1,Panpan JI1,Hui ZHAO2,Jian KANG2
Received:
2018-07-16
Revised:
2018-11-05
Online:
2019-04-05
Published:
2019-04-05
摘要:
针对咪唑啉衍生物的量子化学特征参数与缓蚀效率存在复杂非线性关系,在利用多因素方差分析判断其相关性的基础上建立以最高占据轨道能量、最低未占据轨道能量、分子偶极矩、单点能、硬度、软度、亲核进攻指数、亲电进攻指数、电子转移参数以及咪唑环上非氢原子静电荷之和等量子化学特征参数为输入,以缓蚀效率为输出的模糊人工神经网络。结果表明,咪唑啉衍生物的量子化学特征参数及其缓蚀效率之间具有非常显著的相关性,据此所创建的Takagi-Sugeno型模糊人工神经网络预测模型采用10-30-1网络结构,通过Momentum优化算法对其进行反复训练直至其均方误差小于容许收敛误差限0.005,训练、测试阶段模型输出值与期望值近似呈线性关系,决定系数为0.9999,关联度较高,验证阶段该模型亦表现出良好的可靠性。因此利用量子化学特征的模糊人工神经网络预测模型能够准确预测不同咪唑啉系列衍生物的缓蚀效率。
中图分类号:
范峥, 刘钊, 井晓燕, 姬盼盼, 赵辉, 康建. 利用量子化学特征的模糊人工神经网络预测咪唑啉衍生物缓蚀效率[J]. 化工进展, 2019, 38(04): 1961-1969.
Zheng FAN, Zhao LIU, Xiaoyan JING, Panpan JI, Hui ZHAO, Jian KANG. Prediction of corrosion inhibition efficiency of imidazoline derivatives using fuzzy artificial neural network based on quantum chemical characteristics[J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1961-1969.
序号 | 名称 | I /μA·cm-2 | R /% |
---|---|---|---|
1 | 1-(2-氨基乙基)-2-苄基咪唑啉 | 57.80 | 87.87 |
2 | 1-(2-氨基乙基)-2-硬脂酸咪唑啉 | 29.26 | 93.86 |
3 | 1-(2-氨基乙基)-2-油酸咪唑啉 | 81.39 | 82.92 |
4 | 1-(2-氨基乙基)-2-丙基咪唑啉 | 108.26 | 77.28 |
5 | 1-(2-乙基)-2-辛基咪唑 | 177.59 | 62.73 |
6 | 1-(2-羟乙基)-2-丙基咪唑啉 | 185.69 | 61.03 |
7 | 2-甲基砜-4, 5-二氢-1H-咪唑 | 267.94 | 43.77 |
8 | 2-乙基砜-4, 5-二氢-1H-咪唑 | 313.92 | 34.12 |
9 | 2-苯基-2-咪唑啉 | 18.96 | 96.02 |
10 | 2-甲基-2-咪唑啉 | 35.98 | 92.45 |
11 | 咪唑 | 236.06 | 50.46 |
12 | 2-丙基-2-咪唑啉 | 170.54 | 64.21 |
13 | 2-甲基-2-咪唑啉 | 212.42 | 55.42 |
14 | 4-羟甲基-5-甲基咪唑 | 67.76 | 85.78 |
15 | 苯并咪唑 | 34.12 | 92.84 |
16 | 萘胺唑啉 | 24.25 | 94.91 |
17 | 苯甲唑啉 | 216.81 | 54.50 |
18 | 4, 5-二氢-2-十一烷基-1-乙醇-1H-咪唑 | 138.04 | 71.03 |
19 | 2-甲基苯并咪唑 | 58.37 | 87.75 |
20 | 2-氨基苯并咪唑 | 55.23 | 88.41 |
表1 20种咪唑啉衍生物的电流密度和缓蚀效率 (I 0=476.50μA·cm-2)
序号 | 名称 | I /μA·cm-2 | R /% |
---|---|---|---|
1 | 1-(2-氨基乙基)-2-苄基咪唑啉 | 57.80 | 87.87 |
2 | 1-(2-氨基乙基)-2-硬脂酸咪唑啉 | 29.26 | 93.86 |
3 | 1-(2-氨基乙基)-2-油酸咪唑啉 | 81.39 | 82.92 |
4 | 1-(2-氨基乙基)-2-丙基咪唑啉 | 108.26 | 77.28 |
5 | 1-(2-乙基)-2-辛基咪唑 | 177.59 | 62.73 |
6 | 1-(2-羟乙基)-2-丙基咪唑啉 | 185.69 | 61.03 |
7 | 2-甲基砜-4, 5-二氢-1H-咪唑 | 267.94 | 43.77 |
8 | 2-乙基砜-4, 5-二氢-1H-咪唑 | 313.92 | 34.12 |
9 | 2-苯基-2-咪唑啉 | 18.96 | 96.02 |
10 | 2-甲基-2-咪唑啉 | 35.98 | 92.45 |
11 | 咪唑 | 236.06 | 50.46 |
12 | 2-丙基-2-咪唑啉 | 170.54 | 64.21 |
13 | 2-甲基-2-咪唑啉 | 212.42 | 55.42 |
14 | 4-羟甲基-5-甲基咪唑 | 67.76 | 85.78 |
15 | 苯并咪唑 | 34.12 | 92.84 |
16 | 萘胺唑啉 | 24.25 | 94.91 |
17 | 苯甲唑啉 | 216.81 | 54.50 |
18 | 4, 5-二氢-2-十一烷基-1-乙醇-1H-咪唑 | 138.04 | 71.03 |
19 | 2-甲基苯并咪唑 | 58.37 | 87.75 |
20 | 2-氨基苯并咪唑 | 55.23 | 88.41 |
序号 | E HOMO/eV | E LUMO/eV | μ /debyes | φ/eV | η/eV | σ/eV-1 | Fi + | Fi - | ΔN | Q ring | R/% |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | -5.22867 | 0.03157 | 3.2261 | -17186.0 | 2.6301 | 0.3802 | -0.1401 | -0.1536 | 0.8367 | -0.8372 | 87.87 |
2 | -5.59766 | -0.46341 | 3.3270 | -33141.4 | 2.5671 | 0.3895 | -0.0741 | -0.0084 | 0.7731 | -0.6099 | 93.86 |
3 | -5.38378 | -0.48926 | 2.9395 | -33108.0 | 2.4473 | 0.4086 | -0.2015 | -0.1984 | 0.8302 | -0.5810 | 82.92 |
4 | -5.17071 | 1.15349 | 3.4285 | -13039.2 | 3.1621 | 0.3162 | -0.1877 | -0.1649 | 0.7893 | -0.8337 | 77.28 |
5 | -5.22132 | 1.02723 | 3.1723 | -18386.9 | 3.1243 | 0.3201 | 0.0064 | -0.1108 | 0.7847 | -0.8281 | 62.73 |
6 | -5.36663 | 1.02723 | 3.1517 | -13579.6 | 3.1969 | 0.3128 | -0.1466 | -0.1577 | 0.7555 | -0.8354 | 61.03 |
7 | -5.71439 | 0.78777 | 1.9873 | -18090.2 | 3.2511 | 0.3076 | -0.0778 | -0.1241 | 0.6977 | -1.1807 | 43.77 |
8 | -5.68256 | 0.76083 | 1.8880 | -19159.8 | 3.2217 | 0.3104 | -0.1081 | -0.0890 | 0.7045 | -1.1884 | 34.12 |
9 | -5.59657 | -0.75103 | 2.7308 | -12472.3 | 2.4228 | 0.4128 | -0.0809 | -0.0204 | 0.7896 | -1.0130 | 96.02 |
10 | -5.43384 | 1.17336 | 3.2384 | -7255.9 | 3.3036 | 0.3027 | -0.1784 | -0.1468 | 0.7370 | -0.9167 | 92.45 |
11 | -6.36148 | 0.65335 | 3.9745 | -6153.6 | 3.5074 | 0.2851 | -0.0554 | -0.1107 | 0.5910 | -0.7971 | 50.46 |
12 | -5.44718 | 1.10669 | 3.1385 | -9394.9 | 3.2769 | 0.3052 | -0.1621 | -0.1486 | 0.7369 | -0.9283 | 64.21 |
13 | -6.04120 | 0.73144 | 4.2307 | -7223.3 | 3.3863 | 0.2953 | -0.0714 | -0.1255 | 0.6416 | -0.6249 | 55.42 |
14 | -6.10787 | 0.31946 | 3.8462 | -10338.7 | 3.2137 | 0.3112 | -0.0640 | -0.0977 | 0.6388 | -0.4985 | 85.78 |
15 | -6.16692 | -0.45144 | 3.5905 | -10333.7 | 2.8577 | 0.3499 | -0.1787 | -0.1502 | 0.6458 | -0.5350 | 92.84 |
16 | -5.37125 | 0.27374 | 3.0434 | -18223.2 | 2.8225 | 0.3543 | -0.1178 | -0.1125 | 0.7885 | -0.7353 | 94.91 |
17 | -5.57262 | -0.14149 | 2.9965 | -13541.7 | 2.7156 | 0.3682 | 0.0103 | -0.1308 | 0.7628 | -0.9170 | 54.50 |
18 | -5.37153 | 1.02179 | 3.3133 | -22135.7 | 3.1967 | 0.3128 | -0.0946 | -0.0692 | 0.7547 | -0.8356 | 71.03 |
19 | -6.00528 | -0.30939 | 3.6124 | -11403.6 | 2.8479 | 0.3511 | -0.1677 | -0.1544 | 0.6746 | -0.3740 | 87.75 |
20 | -5.26214 | 0.22477 | 4.6576 | -11839.8 | 2.7435 | 0.3645 | -0.1345 | -0.1308 | 0.8167 | -0.1756 | 88.41 |
表2 20种咪唑啉衍生物量子化学特征参数及其缓蚀效率
序号 | E HOMO/eV | E LUMO/eV | μ /debyes | φ/eV | η/eV | σ/eV-1 | Fi + | Fi - | ΔN | Q ring | R/% |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | -5.22867 | 0.03157 | 3.2261 | -17186.0 | 2.6301 | 0.3802 | -0.1401 | -0.1536 | 0.8367 | -0.8372 | 87.87 |
2 | -5.59766 | -0.46341 | 3.3270 | -33141.4 | 2.5671 | 0.3895 | -0.0741 | -0.0084 | 0.7731 | -0.6099 | 93.86 |
3 | -5.38378 | -0.48926 | 2.9395 | -33108.0 | 2.4473 | 0.4086 | -0.2015 | -0.1984 | 0.8302 | -0.5810 | 82.92 |
4 | -5.17071 | 1.15349 | 3.4285 | -13039.2 | 3.1621 | 0.3162 | -0.1877 | -0.1649 | 0.7893 | -0.8337 | 77.28 |
5 | -5.22132 | 1.02723 | 3.1723 | -18386.9 | 3.1243 | 0.3201 | 0.0064 | -0.1108 | 0.7847 | -0.8281 | 62.73 |
6 | -5.36663 | 1.02723 | 3.1517 | -13579.6 | 3.1969 | 0.3128 | -0.1466 | -0.1577 | 0.7555 | -0.8354 | 61.03 |
7 | -5.71439 | 0.78777 | 1.9873 | -18090.2 | 3.2511 | 0.3076 | -0.0778 | -0.1241 | 0.6977 | -1.1807 | 43.77 |
8 | -5.68256 | 0.76083 | 1.8880 | -19159.8 | 3.2217 | 0.3104 | -0.1081 | -0.0890 | 0.7045 | -1.1884 | 34.12 |
9 | -5.59657 | -0.75103 | 2.7308 | -12472.3 | 2.4228 | 0.4128 | -0.0809 | -0.0204 | 0.7896 | -1.0130 | 96.02 |
10 | -5.43384 | 1.17336 | 3.2384 | -7255.9 | 3.3036 | 0.3027 | -0.1784 | -0.1468 | 0.7370 | -0.9167 | 92.45 |
11 | -6.36148 | 0.65335 | 3.9745 | -6153.6 | 3.5074 | 0.2851 | -0.0554 | -0.1107 | 0.5910 | -0.7971 | 50.46 |
12 | -5.44718 | 1.10669 | 3.1385 | -9394.9 | 3.2769 | 0.3052 | -0.1621 | -0.1486 | 0.7369 | -0.9283 | 64.21 |
13 | -6.04120 | 0.73144 | 4.2307 | -7223.3 | 3.3863 | 0.2953 | -0.0714 | -0.1255 | 0.6416 | -0.6249 | 55.42 |
14 | -6.10787 | 0.31946 | 3.8462 | -10338.7 | 3.2137 | 0.3112 | -0.0640 | -0.0977 | 0.6388 | -0.4985 | 85.78 |
15 | -6.16692 | -0.45144 | 3.5905 | -10333.7 | 2.8577 | 0.3499 | -0.1787 | -0.1502 | 0.6458 | -0.5350 | 92.84 |
16 | -5.37125 | 0.27374 | 3.0434 | -18223.2 | 2.8225 | 0.3543 | -0.1178 | -0.1125 | 0.7885 | -0.7353 | 94.91 |
17 | -5.57262 | -0.14149 | 2.9965 | -13541.7 | 2.7156 | 0.3682 | 0.0103 | -0.1308 | 0.7628 | -0.9170 | 54.50 |
18 | -5.37153 | 1.02179 | 3.3133 | -22135.7 | 3.1967 | 0.3128 | -0.0946 | -0.0692 | 0.7547 | -0.8356 | 71.03 |
19 | -6.00528 | -0.30939 | 3.6124 | -11403.6 | 2.8479 | 0.3511 | -0.1677 | -0.1544 | 0.6746 | -0.3740 | 87.75 |
20 | -5.26214 | 0.22477 | 4.6576 | -11839.8 | 2.7435 | 0.3645 | -0.1345 | -0.1308 | 0.8167 | -0.1756 | 88.41 |
名称 | 平方和 | 自由度 | 均方 | F值 | P值 | 显著性 | |
---|---|---|---|---|---|---|---|
E HOMO | 组间 | 6.3160×104 | 1 | 6.3160×104 | 342.09 | 1.3456×10-20 | 显著 |
组内 | 7.0160×103 | 38 | 1.8463×102 | ||||
E LUMO | 组间 | 5.3998×104 | 1 | 5.3998×104 | 292.26 | 1.9587×10-19 | 显著 |
组内 | 7.0210×103 | 38 | 1.8476×102 | ||||
μ | 组间 | 4.9834×104 | 1 | 4.9834×104 | 269.68 | 7.5562×10-19 | 显著 |
组内 | 7.0220×103 | 38 | 1.8479×102 | ||||
φ | 组间 | 2.3637×109 | 1 | 2.3637×109 | 83.90 | 4.1972×10-11 | 显著 |
组内 | 1.0705×109 | 38 | 2.8171×107 | ||||
η | 组间 | 5.0230×104 | 1 | 5.0230×104 | 272.06 | 6.5237×10-19 | 显著 |
组内 | 7.0160×103 | 38 | 1.8463×102 | ||||
σ | 组间 | 5.4067×104 | 1 | 5.4067×104 | 292.92 | 1.8855×10-19 | 显著 |
组内 | 7.0140×103 | 38 | 1.8458×102 | ||||
Fi + | 组间 | 5.4729×104 | 1 | 5.4729×104 | 296.50 | 1.5359×10-19 | 显著 |
组内 | 7.0140×103 | 38 | 1.8458×102 | ||||
Fi - | 组间 | 5.4743×104 | 1 | 5.4743×104 | 296.58 | 1.5289×10-19 | 显著 |
组内 | 7.0140×103 | 38 | 1.8458×102 | ||||
ΔN | 组间 | 5.3481×104 | 1 | 5.3481×104 | 289.74 | 2.2666×10-19 | 显著 |
组内 | 7.0140×103 | 38 | 1.8458×102 | ||||
Q ring | 组间 | 5.5697×104 | 1 | 5.5697×104 | 301.72 | 1.1434×10-19 | 显著 |
组内 | 7.0150×103 | 38 | 1.8460×102 |
表3 多因素方差分析结果
名称 | 平方和 | 自由度 | 均方 | F值 | P值 | 显著性 | |
---|---|---|---|---|---|---|---|
E HOMO | 组间 | 6.3160×104 | 1 | 6.3160×104 | 342.09 | 1.3456×10-20 | 显著 |
组内 | 7.0160×103 | 38 | 1.8463×102 | ||||
E LUMO | 组间 | 5.3998×104 | 1 | 5.3998×104 | 292.26 | 1.9587×10-19 | 显著 |
组内 | 7.0210×103 | 38 | 1.8476×102 | ||||
μ | 组间 | 4.9834×104 | 1 | 4.9834×104 | 269.68 | 7.5562×10-19 | 显著 |
组内 | 7.0220×103 | 38 | 1.8479×102 | ||||
φ | 组间 | 2.3637×109 | 1 | 2.3637×109 | 83.90 | 4.1972×10-11 | 显著 |
组内 | 1.0705×109 | 38 | 2.8171×107 | ||||
η | 组间 | 5.0230×104 | 1 | 5.0230×104 | 272.06 | 6.5237×10-19 | 显著 |
组内 | 7.0160×103 | 38 | 1.8463×102 | ||||
σ | 组间 | 5.4067×104 | 1 | 5.4067×104 | 292.92 | 1.8855×10-19 | 显著 |
组内 | 7.0140×103 | 38 | 1.8458×102 | ||||
Fi + | 组间 | 5.4729×104 | 1 | 5.4729×104 | 296.50 | 1.5359×10-19 | 显著 |
组内 | 7.0140×103 | 38 | 1.8458×102 | ||||
Fi - | 组间 | 5.4743×104 | 1 | 5.4743×104 | 296.58 | 1.5289×10-19 | 显著 |
组内 | 7.0140×103 | 38 | 1.8458×102 | ||||
ΔN | 组间 | 5.3481×104 | 1 | 5.3481×104 | 289.74 | 2.2666×10-19 | 显著 |
组内 | 7.0140×103 | 38 | 1.8458×102 | ||||
Q ring | 组间 | 5.5697×104 | 1 | 5.5697×104 | 301.72 | 1.1434×10-19 | 显著 |
组内 | 7.0150×103 | 38 | 1.8460×102 |
序号 | E HOMO/eV | E LUMO/eV | μ /debyes | φ/eV | η/eV | σ/eV-1 | Fi + | Fi - | ΔN | Q ring | R′/% | R/% |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | -6.22896 | 0.68463 | 4.3593 | -7223.01 | 3.4568 | 0.2892 | -0.1315 | -0.1457 | 0.6115 | -0.7286 | 72.13 | 72.06 |
2 | -6.05943 | 0.80110 | 3.5835 | -7223.3 | 3.4302 | 0.2915 | -0.0664 | -0.1132 | 0.6370 | -0.5974 | 86.52 | 86.37 |
3 | -6.82842 | -0.80736 | 5.8665 | -13422.0 | 3.0105 | 0.3321 | -0.1649 | -0.1592 | 0.5284 | -0.8744 | 73.28 | 73.16 |
4 | -5.55874 | -0.04707 | 2.8229 | -16717.5 | 2.7558 | 0.3628 | -0.1240 | -0.1511 | 0.7614 | -0.7801 | 78.66 | 78.45 |
5 | -6.39359 | -1.46832 | 5.7182 | -19741.5 | 2.4626 | 0.406 | -0.0742 | -0.1223 | 0.6231 | -0.9458 | 92.35 | 92.56 |
表4 5种咪唑啉衍生物量子化学特征参数及其缓蚀效率
序号 | E HOMO/eV | E LUMO/eV | μ /debyes | φ/eV | η/eV | σ/eV-1 | Fi + | Fi - | ΔN | Q ring | R′/% | R/% |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | -6.22896 | 0.68463 | 4.3593 | -7223.01 | 3.4568 | 0.2892 | -0.1315 | -0.1457 | 0.6115 | -0.7286 | 72.13 | 72.06 |
2 | -6.05943 | 0.80110 | 3.5835 | -7223.3 | 3.4302 | 0.2915 | -0.0664 | -0.1132 | 0.6370 | -0.5974 | 86.52 | 86.37 |
3 | -6.82842 | -0.80736 | 5.8665 | -13422.0 | 3.0105 | 0.3321 | -0.1649 | -0.1592 | 0.5284 | -0.8744 | 73.28 | 73.16 |
4 | -5.55874 | -0.04707 | 2.8229 | -16717.5 | 2.7558 | 0.3628 | -0.1240 | -0.1511 | 0.7614 | -0.7801 | 78.66 | 78.45 |
5 | -6.39359 | -1.46832 | 5.7182 | -19741.5 | 2.4626 | 0.406 | -0.0742 | -0.1223 | 0.6231 | -0.9458 | 92.35 | 92.56 |
序号 | R′ | R | F | ||||
---|---|---|---|---|---|---|---|
数值/% | 方差 | 自由度 | 数值% | 方差 | 自由度 | ||
1 | 72.13 | 72.06 | |||||
2 | 86.52 | 86.37 | |||||
3 | 73.28 | 75.5488 | 4 | 73.16 | 77.3026 | 4 | 0.9773 |
4 | 78.66 | 78.45 | |||||
5 | 92.35 | 92.56 |
表5 模糊人工神经网络预测模型的验证结果
序号 | R′ | R | F | ||||
---|---|---|---|---|---|---|---|
数值/% | 方差 | 自由度 | 数值% | 方差 | 自由度 | ||
1 | 72.13 | 72.06 | |||||
2 | 86.52 | 86.37 | |||||
3 | 73.28 | 75.5488 | 4 | 73.16 | 77.3026 | 4 | 0.9773 |
4 | 78.66 | 78.45 | |||||
5 | 92.35 | 92.56 |
A | —— | 语言变量值 |
---|---|---|
b | —— | 高斯隶属函数宽度 |
c | —— | 高斯隶属函数中心 |
I 0,I | —— | 分别为空白和加药条件下的电流密度,μA/cm2 |
p | —— | 后件网络连接权值 |
α | —— | 适应度 |
β | —— | 学习效率 |
μ | —— | 高斯隶属函数 |
ζ | —— | 动量 |
模糊人工神经网络预测模型的验证结果
A | —— | 语言变量值 |
---|---|---|
b | —— | 高斯隶属函数宽度 |
c | —— | 高斯隶属函数中心 |
I 0,I | —— | 分别为空白和加药条件下的电流密度,μA/cm2 |
p | —— | 后件网络连接权值 |
α | —— | 适应度 |
β | —— | 学习效率 |
μ | —— | 高斯隶属函数 |
ζ | —— | 动量 |
1 | 薛丹, 胡敏 . 陕北气田气井腐蚀速率影响因素及规律[J]. 表面技术, 2016, 45(2): 169-174. |
XUE Dan , HU Min . Factors and rules affecting gas well corrosion rate in Shanbei gasfield[J]. Surface Technology, 2016, 45(2): 169-174. | |
2 | REN Y M , ZHANG J , DU M , et al . The synergistic inhibition effect between imidazoline-based dissymmetric bis-quaternary ammonium salts and thiourea on Q235 steel in CO2 corrosion process[J]. Researchon Chemical Intermediates, 2016, 42(2): 641-657. |
3 | 郭睿, 程敏, 杨江月, 等 . 月桂酸咪唑啉硫酸酯盐缓蚀剂在A3钢表面吸附成膜行为[J]. 化工进展, 2017, 36(1): 336-342. |
GUO Rui , CHENG Min , YANG Jiangyue , et al . Adsorption behavior of lauryl imidazoline sulfuric ester inhibitor on the surface of A3 steel[J]. Chemical Industry and Engineering Progress, 2017, 36(1): 336-342. | |
4 | 吴刚, 郝宁眉, 陈银娟, 等 . 新型油酸咪唑啉缓蚀剂的合成及其性能评价[J]. 化工学报, 2013, 64(4): 1485-1492. |
WU Gang , HAO Ningmei , CHEN Yinjuan , et al . Synthesis and performance evaluation of a new oleic imidazoline corrosion inhibitor[J]. CIESC Journal, 2013, 64(4): 1485-1492. | |
5 | ZHANG J , NIU L W , ZHU F M , et al . Theoretical and experimental studies for corrosion inhibition performance of Q235 steel by imidazoline inhibitors against CO2 corrosion[J]. Journal of Surfactants and Detergents, 2013, 16(6): 947-956. |
6 | AL-AZAWI K F , AL-BAGHDADI S B , MOHAMED AYAD Z , et al . Synthesis, inhibition effects and quantum chemical studies of a novel coumarin derivative on the corrosion of mild steel in a hydrochloric acid solution[J]. Chemistry Central Journal, 2016, 10(1): 1-9. |
7 | ZHANG W W , MA R, LI S , et al . Electrochemical and quantum chemical studies of azoles as corrosion inhibitors for mild steel in hydrochloric acid[J]. Chemical Research in Chinese Universities, 2016, 32(5): 827-837. |
8 | 胡松青, 胡建春, 石鑫, 等 . 咪唑啉衍生物缓蚀剂的定量构效关系及分子设计[J]. 物理化学学报, 2009, 25(12): 2524-2530. |
HU Songqing , HU Jiangchun , SHI Xin , et al . QSAR and molecular design of imidazoline derivatives as corrosion inhibitors[J]. Acta Physico-Chimica Sinica, 2009, 25(12): 2524-2530. | |
9 | 梁占伟, 陈鸿伟, 杨新, 等 . 混燃煤气气氛下NO x 排放特性与建模预测[J]. 化工进展, 2017, 36(11): 4265-4271. |
LIANG Zhanwei , CHEN Hongxin , YANG Xin , et al . Characteristic of NO x emissions in co-firing gases and modeling prediction[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4265-4271. | |
10 | GHIASI M M. , BAHADORI A , ZENDEHBOUDI S . Estimation of triethylene glycol (TEG) purity in natural gas dehydration units using fuzzy neural network[J]. Journal of Natural Gas Science and Engineering, 2014,17: 26-32. |
11 | 付柯, 谢良才, 闫雨瑗, 等 . 改进BP神经网络预测Ni/Al2O3催化CH4-CO2重整反应[J]. 化工进展, 2017, 36(7): 2393-2399. |
FU Ke , XIE Liangcai , YAN Yuyuan , et al . Predicting model of CH4-CO2 reforming on Ni/Al2O3 catalyst by improved back propagation (BP)neural network[J]. Chemical Industry and Engineering Progress, 2017, 36(7): 2393-2399. | |
12 | PENG X H XIE S Y , YU Y H , et al . Fuzzy neural network based prediction model applied in primary component analysis[J]. Cluster Computing, 2017, 20(1): 131-140. |
13 | ZOU K , GE X S . Neural-network-based fuzzy logic control of a 3D rigid pendulum[J]. International Journal of Control, Automation and Systems, 2017, 15(5): 2425-2435. |
14 | 朱鹏飞, 夏陆岳, 周猛飞, 等 . 基于混合建模技术的聚氯乙烯粒径分布预测[J]. 高校化学工程学报, 2014, 28(2): 384-389. |
ZHU Pengfei , XIA Luyue , ZHOU Mengfei , et al . Prediction for the particle size distribution of polyvinyl chloride based on hybrid modeling technique[J]. Journal of Chemical Engineering of Chinese Universities, 2014, 28(2): 384-389. | |
15 | TSAI C C , TAI F C , CHANG Y L , et al . Adaptive predictive PID control using fuzzy wavelet neural networks for nonlinear discrete-time time-delay systems[J]. International Journal of Fuzzy Systems, 2017, 19(6): 1718-1730. |
16 | QI X N , LIU Y Q , GUO Q J , et al . Performance prediction of a shower cooling tower using wavelet neural network[J]. Applied Thermal Engineering, 2016, 108(7): 475-485. |
17 | SAGHATOLESLAMI N , VATANKHAH G H , KARIMI H , et al . Prediction of the overall sieve tray efficiency for a group of hydrocarbons, an artificial neural network approach[J]. Journal of Natural Gas Science and Engineering, 2011, 3(1): 319-325. |
18 | YANG H J , HU X . Wavelet neural network with improved genetic algorithm for traffic flow time series prediction[J]. Optik International Journal for Light and Electron Optics, 2016, 127(19): 8103-8110. |
19 | 马晓丹, 刘刚, 周薇, 等 . 基于量子遗传模糊神经网络的苹果果实识别[J]. 农业机械学报, 2013, 44(12): 227-232, 251. |
Xiaodan MA , LIU Gang , ZHOU Wei , et al . Apple fruit recognition based on quantum genetic fuzzy neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(12): 227-232, 251. | |
20 | 向敏, 何川, 田力, 等 . 基于模糊神经网络的配电网无线通信系统性能评估方法[J]. 电力科学与技术学报, 2016, 31(2): 64-71. |
XIANG Min , HE Chuan , TIAN Li , et al . Evaluation method for wireless communication performance of distribution network based on fuzzy neural network[J]. Journal of Electric Power Science and Technology, 2016, 31(2): 64-71. | |
21 | 袁清珂, 石亚平, 张明天, 等 . 基于变论域电阻点焊模糊神经网络控制方法[J]. 焊接学报, 2010, 31(1): 25-28, 32, 114. |
YUAN Qingke , SHI Yaping , ZHANG Mingtian , et al . Fuzzy neural network control method for resistance spot welding based on variable universe[J]. Transactions of the China Welding Institution , 2010, 31(1): 25-28, 32, 114. | |
22 | 杨智琴 . 山西省地质灾害气象预警模型探讨[J]. 中国地质灾害与防治学报, 2015, 26(1): 117-121. |
YANG Zhiqin . Meteorological early warning model research geologic disaster in Shanxi province[J]. The Chinese Journal of Geological Hazard and Control, 2015, 26(1): 117-121. |
[1] | 徐晨阳, 都健, 张磊. 基于图神经网络的化学反应优劣评价[J]. 化工进展, 2023, 42(S1): 205-212. |
[2] | 吴正浩, 周天航, 蓝兴英, 徐春明. 人工智能驱动化学品创新设计的实践与展望[J]. 化工进展, 2023, 42(8): 3910-3916. |
[3] | 王俊杰, 潘艳秋, 牛亚宾, 俞路. 分子水平催化重整装置模型构建及应用[J]. 化工进展, 2023, 42(7): 3404-3412. |
[4] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[5] | 李蓝宇, 黄新烨, 王笑楠, 邱彤. 化工科研范式智能化转型的思考与展望[J]. 化工进展, 2023, 42(7): 3325-3330. |
[6] | 张建伟, 许蕊, 张忠闯, 董鑫, 冯颖. 基于卷积神经网络的撞击流反应器浓度场混合特性[J]. 化工进展, 2023, 42(2): 658-668. |
[7] | 曾思颖, 杨敏博, 冯霄. 基于机器学习的煤层气组成预测及液化过程的实时优化[J]. 化工进展, 2023, 42(10): 5059-5066. |
[8] | 王璐, 张磊, 都健. 机器学习高效筛选用于CO2/N2选择性吸附分离的沸石材料[J]. 化工进展, 2023, 42(1): 148-158. |
[9] | 潘艳秋, 李鹏飞, 高石磊, 俞路. 基于MIC筛选规则和BP神经网络的变换装置建模及产品预测[J]. 化工进展, 2022, 41(S1): 36-43. |
[10] | 孙德贇, 胡艳宏, 刘鹏, 唐茂, 胡泽, 柳召刚, 吴锦绣. 不同铈盐体系(硝酸盐、硫酸盐、氯化盐)中CTAB与Ce3+的相互作用机理[J]. 化工进展, 2022, 41(6): 3212-3220. |
[11] | 李国友, 张新魁, 才士文, 贾曜宇, 宁泽. 基于改进KFDA与DE优化SOM的故障诊断模型及其化工过程诊断[J]. 化工进展, 2022, 41(4): 1793-1801. |
[12] | 陈磊, 闫兴清, 胡延伟, 于帅, 杨凯, 陈绍云, 关辉, 喻健良, HMAHGEREFTE Haroun, MARTYNOV Sergey. 二氧化碳管道意外泄漏减压过程的断裂控制研究进展[J]. 化工进展, 2022, 41(3): 1241-1255. |
[13] | 竹涛, 韩一伟, 刘帅, 谢蔚, 苑博, 宋慧平, 程芳琴. 单原子位点催化剂及其电催化应用研究进展[J]. 化工进展, 2022, 41(2): 666-681. |
[14] | 李欣铜, 陈志冰, 魏志强, 李苏桐, 陈旭, 宋凯. 具有输入数据注意力机制的卷积神经网络用于氟化工产品质量预测[J]. 化工进展, 2022, 41(2): 593-600. |
[15] | 李帅, 刘明言, 马永丽. 基于BP人工神经网络预测地热井中流体的结垢位置[J]. 化工进展, 2022, 41(11): 5761-5770. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |