化工进展 ›› 2019, Vol. 38 ›› Issue (07): 3013-3027.DOI: 10.16085/j.issn.1000-6613.2018-1366
收稿日期:
2018-07-04
出版日期:
2019-07-05
发布日期:
2019-07-05
通讯作者:
屈孟男
作者简介:
何金梅(1981—),女,副教授,研究方向为仿生功能界面材料。E-mail:<email>jinmhe@gmail.com</email>。
基金资助:
Jinmei HE(),Jiao HE,Mingjuan YUAN,Menghui XUE,Xiangrong LIU,Mengnan QU()
Received:
2018-07-04
Online:
2019-07-05
Published:
2019-07-05
Contact:
Mengnan QU
摘要:
近年来,众多研究者通过物理或化学方法,将超疏水材料与不同基底或材料结合,制备出了能够抵抗各种机械磨损和溶剂、气体、紫外照射、颗粒、酸碱和细菌的,具有优良耐磨损性和稳定性的超疏水材料。本文主要介绍了超疏水材料表面机械稳定性差的原因以及评估超疏水材料耐磨损性的常见方法,根据制备方法和基底的不同将超疏水材料分为三类,分别从网格类、织物类和涂层类等方面对近年来具有耐磨损性和稳定性超疏水表面的研究成果进行综述,对高稳定性超疏水材料的研究进展有一个全面的认识,并总结了目前在制备高稳定性超疏水材料这一领域存在的一些问题,例如测试高稳定性的方法较少、没有统一的标准等,开发和研究能够二次利用以及多功能超疏水材料仍是一大挑战。
中图分类号:
何金梅, 何姣, 袁明娟, 薛萌辉, 刘向荣, 屈孟男. 高稳定性超疏水材料研究进展[J]. 化工进展, 2019, 38(07): 3013-3027.
Jinmei HE, Jiao HE, Mingjuan YUAN, Menghui XUE, Xiangrong LIU, Mengnan QU. Research progress of superhydrophobic materials with high-stability property[J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3013-3027.
1 | WANGYang, LIUXiaowei, ZHANGHaifeng, et al. Fabrication of self-healing super-hydrophobic surfaces on aluminium alloy substrates[J]. AIP Advances, 2015, 5(4): 202-208. |
2 | JINMeihua, FENGXinjian, FENGLin, et al. Superhydrophobic aligned polystyrene nanotube films with high adhesive force[J]. Advanced Materials, 2010, 17(16): 1977-1981. |
3 | LIXuemei, REINHOUDTD, CREGO-CALAMAM. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces[J]. Chemical Society Reviews, 2007, 38(44): 1350-1368. |
4 | WANGJing, ZHANGCong, YANGChunming, et al. Superhydrophilic antireflective periodic mesoporous organosilica coating on flexible polyimide substrate with strong abrasion-resistance[J]. ACS Applied Materials & Interfaces, 2017, 9(6): 5468-5476. |
5 | LVJianyong, SONGYanlin, JIANGLei, et al. Bio-inspired strategies for anti-icing[J]. ACS Nano, 2014, 8(4): 3152-3169. |
6 | WENLiping, TIANYe, JIANGLei. Bioinspired super-wettability from fundamental research to practical applications[J]. Angewandte Chemie: International Edition, 2015, 54(11): 3387-3399. |
7 | PhilseokKIM, WONG Tak Sing, JackALVARENGA, et al. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance[J]. ACS Nano, 2012, 6(8): 6569-6577. |
8 | HOWARTER JohnA, YOUNGBLOOD JeffreyP. Self-cleaning and anti-fog surfaces via stimuli-responsive polymer brushes[J]. Advanced Materials, 2007, 19(22): 3838-3843. |
9 | ReinerFURSTNER, WilhelmBARTHLOTT, ChristophNEINHUIS, et al. Wetting and self-cleaning properties of artificial superhydrophobic surfaces[J]. Langmuir, 2005, 21(3): 956-961. |
10 | WENGChengjian, CHANGChihao, PENGChihwei, et al. Advanced anticorrosive coatings prepared from the mimicked xanthosoma sagittifolium-leaf-like electroactive epoxy with synergistic effects of superhydrophobicity and redox catalytic capability[J]. Chemistry of Materials, 2011, 23(8): 2075-2083. |
11 | PADTURE NitinP, MauriceGELL, JORDAN EricH. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296(5566): 280-284. |
12 | LUYao, SanjayanSATHASIVAM, SONGJinlong, et al. Creating superhydrophobic mild steel surfaces for water proofing and oil-water separation[J]. Journal of Materials Chemistry A, 2014, 2(30): 11628-11634. |
13 | EPSTEIN AlexanderK, WONG Tak Sing, BELISLE RebeccaA, et al. Liquid-infused structured surfaces with exceptional anti-biofouling performance[J]. Proceedings of the National Academy of Sciences, 2012, 109(33): 13182-13187. |
14 | GUOHongxia, YiwenMA, QINZhenping, et al. One step transformation from hierarchical-structured superhydrophilic NF membrane into superhydrophobic OSN membrane with improved anti-fouling effect[J]. ACS Applied Materials & Interfaces, 2016, 8(35): 23379-23388. |
15 | ZekeriyyaGEMICI, HiroomiSHIMOMURA, COHEN RobertE, et al. Hydrothermal treatment of nanoparticle thin films for enhanced mechanical durability[J]. Langmuir, 2008, 24(5): 2168-2177. |
16 | ZHANGYaoyao, GEQuan, YANGLonglai, et al. Durable superhydrophobic PTFE films through the introduction of micro- and nanostructured pores[J]. Applied Surface Science, 2015, 339(2015): 151-157. |
17 | HandongCHO, DongseobKIM, ChangwooLEE, et al. A simple fabrication method for mechanically robust superhydrophobic surface by hierarchical aluminum hydroxide structures[J]. Current Applied Physics, 2013, 13(2013): 762-767. |
18 | PanneerselvamVENGATESH, KULANDAINATHAN Manickam Anbu. Hierarchically ordered self-lubricating superhydrophobic anodized aluminum surfaces with enhanced corrosion resistance[J]. ACS Applied Materials & Interfaces, 2015, 7(3): 1516-1526. |
19 | FENGLin, LIShuhong, LIYingshun, et al. Super-hydrophobic surfaces: from natural to artificial[J]. Advanced Materials, 2002, 14(21): 1857-1860. |
20 | GAOLichao, MCCARTHY ThomasJ. The “lotus effect” explained: two reasons why two length scales of topography are important[J]. Langmuir, 2006, 22(7): 2966-2967. |
21 | ToktamREZAYI, ENTEZARI MohammadH. Toward a durable superhydrophobic aluminum surface by etching and ZnO nanoparticle deposition[J]. Journal of Colloid & Interface Science, 2016, 463(1): 37-45. |
22 | ZHENGShunli, LICheng, FUQitao, et al. Fabrication of self-cleaning superhydrophobic surface on aluminum alloys with excellent corrosion resistance[J]. Surface & Coatings Technology, 2015, 276(25): 341-348. |
23 | YUANJing, WANGJihui, ZHANGKaili, et al. Fabrication and properties of a superhydrophobic film on an electroless plated magnesium alloy[J]. RSC Advances, 2017, 7(46): 28909-28917. |
24 | SUFenghua, YAOKai. Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method[J]. ACS Applied Materials & Interfaces, 2014, 6(11): 8762-8770. |
25 | ZHANGQinghua, JINBiyu, WANGBing, et al. Fabrication of a highly stable superhydrophobic surface with dual-scale structure and its antifrosting properties[J]. Industrial & Engineering Chemistry Research, 2017, 56(10): 2754-2763. |
26 | WANGNan, XIONGDangsheng, DENGYaling, et al. Mechanically robust superhydrophobic steel surface with anti-icing, UV-durability, and corrosion resistance properties[J]. ACS Applied Materials & Interfaces, 2015, 7(11): 6260-6272. |
27 | LIUJing, WANGLi, WANGNu, et al. A robust Cu(OH)2 nanoneedles mesh with tunable wettability for nonaqueous multiphase liquid separation[J]. Small, 2017, 13(4): 499-505. |
28 | TuukkaVERHO, ChrisBOWER, PiersANDREW, et al. Mechanically durable superhydrophobic surfaces[J]. Advanced Materials, 2010, 23(5): 673-678. |
29 | RaymondCAMPOS, GUENTHNER AndrewJ, MEULER AdamJ, et al. Superoleophobic surfaces through control of sprayed-on stochastic topography[J]. Langmuir, 2012, 28(25): 9834-9841. |
30 | PENGShan, YANGXiaojun, TIANDong, et al. Chemically stable and mechanically durable superamphiphobic aluminum surface with a micro/nanoscale binary structure[J]. ACS Applied Materials & Interfaces, 2014, 6(17): 15188-15197. |
31 | XULigang, GENGZhi, HEJunhui, et al. Mechanically robust, thermally stable, broadband antireflective, and superhydrophobic thin films on glass substrates[J]. ACS Applied Materials & Interfaces, 2014, 6(12): 9029-9025. |
32 | ZHANGXia, GUOYonggang, ZHANGZhijun, et al. Facile approach for preparation of stable water-repellent nanoparticle coating[J]. Applied Surface Science, 2012, 258(20): 7907-7911. |
33 | DIKIĆT, MINGW, BENTHEM R A T MVAN, et al. Self-replenishing surfaces[J]. Advanced Materials, 2012, 24(27): 3701-3704. |
34 | NaoyukiYOKOI, KengoMANABE, MizukiTENJIMBAYASHI, et al. Optically transparent superhydrophobic surfaces with enhanced mechanical abrasion resistance enabled by mesh structure[J]. ACS Applied Materials & Interfaces, 2015, 7(8): 4809-4816. |
35 | XUQianfeng, BikashMONDAL, LYONS AianM. Fabricating superhydrophobic polymer surfaces with excellent abrasion resistance by a simple lamination templating method[J]. ACS Applied Materials & Interfaces, 2011, 3(9): 3508-3514. |
36 | AlexanderDAVIS, SalvatoreSURDO, GianvitoCAPUTO, et al. Environmentally benign production of stretchable and robust superhydrophobic silicone monoliths[J]. ACS Applied Materials & Interfaces, 2018, 10(3): 2907-2917. |
37 | WANGPeng, SUNBo, YAOTao, et al. A novel dissolution and resolidification method for preparing robust superhydrophobic polystyrene/silica composite[J]. Chemical Engineering Journal, 2017, 326(15): 1066-1073. |
38 | EeroHUOVINEN, JanneHIRVI, MikaSUVANTO, et al. Micro-micro hierarchy replacing micro-nano hierarchy: a precisely controlled way to produce wear-resistant superhydrophobic polymer surfaces[J]. Langmuir, 2012, 28(41): 14747-14755. |
39 | SindhuDOPPALAPUDI, AnjaliJAIN, WahidKHAN, et al. Biodegradable polymers-an overview[J]. Polymers for Advanced Technologies, 2014, 25(5): 427-435. |
40 | ZHOUHua, WANGHangxia, NIUHaitao, et al. Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating[J]. Advanced Materials, 2012, 24(18): 2409-2412. |
41 | ZHAOHong, Kock YeeLAW. Super toner and ink repellent superoleophobic surface[J]. ACS Applied Materials & Interfaces, 2012, 4(8): 4288-4295. |
42 | Min JungKIM, JEON Zn Yup, Jeong MinSEO, et al. Graphene phosphonic acid as an efficient flame retardant[J]. ACS Nano, 2014, 8(3): 2820-2825. |
43 | CHENShanshan, LIXiang, LIYang, et al. Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric[J]. ACS Nano, 2015, 9(4): 4070-4076. |
44 | JINHua, TIANXunlin, OlliIKKALA, et al. Preservation of superhydrophobic and superoleophobic properties upon wear damage[J]. ACS Applied Materials & Interfaces, 2013, 5(3): 485-488. |
45 | JunfeiOU, HUWeihua, XUEMingshan, et al. Superhydrophobic surfaces on light alloy substrates fabricated by a versatile process and their corrosion protection[J]. ACS Applied Materials & Interfaces, 2013, 5(8): 3101-3107. |
46 | ZHANGWenbo, XIANGTianhao, FENGLiu, et al. Facile design and fabrication of superwetting surfaces with excellent wear-resistance[J]. ACS Applied Materials & Interfaces, 2017, 9(18): 15776-15784. |
47 | ZHOUHua, WANGHongxia, NIUHaitao, et al. Robust, self-healing superamphiphobic fabrics prepared by two-step coating of fluoro-containing polymer, fluoroalkyl silane, and modified silica nanoparticles[J]. Advanced Functional Materials, 2013, 23(13): 1664-1670. |
48 | XULebo, KARUNAKARAN RaghuramanG, GUOJia, et al. Transparent, superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles[J]. ACS Applied Materials & Interfaces, 2012, 4(2): 1118-1125. |
49 | LIUKesong, CAOMoyuan, AkiraFUJISHIMA, et al. Bio-inspired titanium dioxide materials with special wettability and their applications[J]. Chemical Reviews, 2014, 114(19): 10044-10094. |
50 | GUJincui, XIAOPeng, CHENPeng, et al. Functionalization of biodegradable PLA non-woven fabric as superoleophilic and superhydrophobic material for efficient oil absorption and oil/water separation[J]. ACS Applied Materials & Interfaces, 2017, 9(7): 5968-5973. |
51 | ZHOUCailong, CHENZhaodan, YANGHao, et al. A nature-inspired strategy toward superhydrophobic fabrics for versatile oil/water separation[J]. ACS Applied Materials & Interfaces, 2017, 9(10): 9184-9194. |
52 | QUMengnan, HOULingang, HEJinmei, et al. Facile process for the fabrication of durable superhydrophobic fabric with oil/water separation property[J]. Fibers & Polymers, 2016, 17(12): 2062-2068. |
53 | RATHER Adil Majeed, UttamMANNA. Stretchable and durable superhydrophobicity that acts both in air and under oil[J]. Journal of Materials Chemistry A, 2017, 5(29): 15208-15216. |
54 | YEHui, ZHULiqun, LIWeiping, et al. Constructing fluorine-free and cost-effective superhydrophobic surface with normal-alcohol-modified hydrophobic SiO2 nanoparticles[J]. ACS Applied Materials & Interfaces, 2016, 9(1): 858-867. |
55 | QUMengnan, LIUShanshan, HEJinmei, et al. Fabrication of recyclable superhydrophobic materials with self-cleaning and mechanically durable properties on various substrates by quartz sand and polyvinylchloride[J]. RSC Advances, 2016, 6(82): 79238-79244. |
56 | CHENKunlin, GUKun, QIANGSiyu, et al. Environmental stimuli-responsive self-repairing waterbased superhydrophobic coatings[J]. RSC Advances, 2017, 7(1): 543-550. |
57 | QUMengnan, LIUShanshan, HEJinmei, et al. Fabrication of recyclable and durable superhydrophobic materials with wear/corrosion-resistance properties from kaolin and polyvinylchloride[J]. Applied Surface Science, 2017, 410(15): 399-307. |
58 | HEJinmei, HEJiao, KANGJie, et al. Facile fabrication of durable superhydrophobic materials from mineral soil with wear-resistance[J]. Nanoscience and Nanotechnology Letters, 2018, 10(4): 486-490. |
59 | NINE MdJ, COLE MartinA, LucasJOHNSON, et al. Robust superhydrophobic graphene-based composite coatings with self-cleaning and corrosion barrier properties[J]. ACS Applied Materials & Interfaces, 2015, 7(51): 28482-28493. |
60 | PENGChaoyi, CHENZhuyang, TIWARI ManishK. All-organic superhydrophobic coatings with mecanochemcal robusness and liquid imaement resistance[J]. Nature Materials, 2018, 10: 355-360. |
61 | LIKunquan, ZENGXingrong, LAIXuejun, et al. Study on the anti-abrasion resistance of superhydrophobic coatings based on fluorine-containing acrylates with different Tg and SiO2[J]. RSC Advances, 2017, 7(75): 47738-47745. |
62 | LUYao, SanjayanSATHASIVAM, SONGJinlong, et al. Repellent materials. Robust self-cleaning surfaces that function when exposed to either air or oil[J]. Science, 2015, 347(6226): 1132-1135. |
63 | CHENLiang, SUNXiaoying, HANGJianzhong, et al. Large-scale fabrication of robust superhydrophobic coatings with high rigidity and good flexibility[J]. Advanced Materials Interfaces, 2016, 3(6): 1500718. |
64 | BAIXue, XUEChaohua, JIAShuntian. Surfaces with sustainable superhydrophobicity upon mechanical abrasion[J]. ACS Applied Materials & Interfaces, 2016, 8(41): 28171-28179. |
65 | LONGMengying, PENGShan, YANGXiaojun, et al. One-step fabrication of non-fluorinated transparent super-repellent surfaces with tunable wettability functioning in both air and oil[J]. ACS Applied. Materials & Interfaces, 2017, 9(18): 15857-15867. |
66 | HWANG Gi Byoung, AdnanPATIR, ElaineALLAN, et al. Superhydrophobic and white light-activated bactericidal surface through a simple coating[J]. ACS Applied Materials & Interfaces, 2017, 9(34): 29002-29009. |
67 | FUYuchen, JINBiyu, ZHANGQinghua, et al. pH-Induced switchable superwettability of efficient antibacterial fabrics for durable selective oil/water separation[J]. ACS Applied Materials & Interfaces, 2017, 9(35): 30161-30170. |
68 | MINGPeng, SONGZhaofei, GONGShanshan, et al. Nacre-inspired integrated nanocomposites with fire retardant properties by graphene oxide and montmorillonite[J]. Journal of Materials Chemistry A, 2015, 3(42): 21194-21200. |
69 | AndreasWALTHER, IngelaBJURHAGER, MALHO Jani Markus, et al. Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways[J]. Nano Letters, 2010, 10(8): 2742-2748. |
70 | YAOHongbin, TANZhihua, FANGHaiyu, et al. Artificial nacre-like bionanocomposite films from the self-assembly of chitosan-montmorillonite hybrid building blocks[J]. Angewandte Chemie, 2010, 52(122): 10325-10329. |
71 | NAIRR R, WUH A, JAYARAMP N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335(6067): 442-444. |
72 | ZHANGWenbin, ZHUYuzhang, LIUXia, et al. Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions[J]. Angewandte Chemie, 2014, 126(3): 875-879. |
73 | SONGWeili, GUANXiaotian, FANLizhen, et al. Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding[J]. Journal of Materials Chemistry A, 2015, 3(5): 2097-2107. |
74 | CHENChengmeng, YANGQuanhong, YANGYonggang, et al. Self-assembled free-standing graphite oxide membrane[J]. Advanced Materials, 2010, 21(29): 3007-3011. |
75 | CHENHongyuan, KANGYiran, CAIFeng, et al. Electrochemical conversion of Ni2(OH)2CO3 into Ni(OH)2 hierarchical nanostructures loaded on a carbon nanotube paper with high electrochemical energy storage performance[J]. Journal of Materials Chemistry A, 2015, 3(5): 1875-1878. |
76 | LILester, VictorBREEDVELD, HESS DennisW. Design and fabrication of superamphiphobic paper surfaces[J]. ACS Applied Materials & Interfaces, 2013, 5(11): 5381-5386. |
77 | WANGSuhao, LIMei, LUQinghua. Filter paper with selective absorption and separation of liquids that differ in surface tension[J]. ACS Applied Materials & Interfaces, 2010, 2(3): 677-683. |
78 | CHENFeifei, ZHUYingjie, XIONGZhichao, et al. Highly flexible superhydrophobic and fire-resistant layered inorganic paper[J]. ACS Applied Materials & Interfaces, 2016, 8(50): 34715-34724. |
79 | WANGShanlin, YUXinquan, ZHANGYoufa. Large-scale fabrication of translucent, stretchable and durable superhydrophobic composite films[J]. Journal of Materials Chemistry A, 2017, 4(45): 23489-23496. |
[1] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[2] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[3] | 李润蕾, 王子彦, 王志苗, 李芳, 薛伟, 赵新强, 王延吉. CuO-CeO2/TiO 2 高效催化CO低温氧化反应性能[J]. 化工进展, 2023, 42(8): 4264-4274. |
[4] | 王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[5] | 储甜甜, 刘润竹, 杜高华, 马嘉浩, 张孝阿, 王成忠, 张军营. 有机胍催化脱氢型RTV硅橡胶的制备和可降解性能[J]. 化工进展, 2023, 42(7): 3664-3673. |
[6] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[7] | 吴展华, 盛敏. 绝热加速量热仪在反应安全风险评估应用中的常见问题[J]. 化工进展, 2023, 42(7): 3374-3382. |
[8] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[9] | 陈香李, 李倩倩, 张甜, 李彪, 李康康. 自愈合油水分离膜的研究进展[J]. 化工进展, 2023, 42(7): 3600-3610. |
[10] | 谢志伟, 吴张永, 朱启晨, 蒋佳骏, 梁天祥, 刘振阳. 植物油基Ni0.5Zn0.5Fe2O4磁流体的黏度特性及磁黏特性[J]. 化工进展, 2023, 42(7): 3623-3633. |
[11] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[12] | 刘战剑, 付雨欣, 任丽娜, 张曦光, 袁中涛, 杨楠, 汪怀远. 超疏水涂层在防腐阻垢领域研究进展[J]. 化工进展, 2023, 42(6): 2999-3011. |
[13] | 杨家添, 唐金铭, 梁恣荣, 黎胤宏, 胡华宇, 陈渊. 新型淀粉基高吸水树脂抑尘剂的制备及其应用[J]. 化工进展, 2023, 42(6): 3187-3196. |
[14] | 杨扬, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂OP-13促进HCFC-141b水合物生成[J]. 化工进展, 2023, 42(6): 2854-2859. |
[15] | 陈怡欣, 甄摇摇, 陈瑞浩, 吴继伟, 潘丽美, 姚翀, 罗杰, 卢春山, 丰枫, 王清涛, 张群峰, 李小年. 铂基纳米催化剂的制备及在加氢领域的进展[J]. 化工进展, 2023, 42(6): 2904-2915. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |