化工进展 ›› 2019, Vol. 38 ›› Issue (03): 1283-1296.DOI: 10.16085/j.issn.1000-6613.2018-1026
收稿日期:
2018-05-17
修回日期:
2018-07-25
出版日期:
2019-03-05
发布日期:
2019-03-05
通讯作者:
李文翠
作者简介:
基金资助:
Chengyu YE(),Dong YAN(),Anhui LU,Wencui LI()
Received:
2018-05-17
Revised:
2018-07-25
Online:
2019-03-05
Published:
2019-03-05
Contact:
Wencui LI
摘要:
锂离子电容器(lithium ion capacitor,LIC)是一种新型的电化学储能器件,可以填补锂离子电池和超级电容器两者之间的性能空白,是下一代高能量密度超级电容器的前进方向。本文首先介绍了锂离子电容器的储能原理分为电解液消耗机制、锂离子交换机制以及混合机制,并围绕高能量密度的有机介质体系锂离子电容器,着重阐述了各类电容及电池型正负极材料的性质特点、优化方向及其研究现状,指出不同材料的优缺点及改性方法。同时叙述了与产业应用相关的预嵌锂技术、隔膜、电解液以及体系匹配等方面的研究现状,总结归纳了这些部件的研究对于比能量、功率、安全、稳定性等性能的提升。在产业化应用方面,针对锂离子电容器不同于锂离子电池和传统超级电容器的性能指标,总结其在智能物流、起重机电源、机器人电源及轨道交通等方面独特的应用前景。最后展望了电极材料微观结构优化及功能集成、电解液专用化,预嵌锂成本进一步压缩、以及检测及原位表征方法的开发等锂离子电容器未来的发展方向。
中图分类号:
叶成玉,颜冬,陆安慧,李文翠. 有机介质体系锂离子电容器[J]. 化工进展, 2019, 38(03): 1283-1296.
Chengyu YE,Dong YAN,Anhui LU,Wencui LI. Lithium ion capacitors with organic electrolyte[J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1283-1296.
电极材料 | 电解液 | 电压/V | 比能量/W·h·kg-1 | 比功率/kW·kg-1 | 文献 |
---|---|---|---|---|---|
磷酸钒锂-炭//活性炭 | LiPF6-EC/DEC | 1~3 | 27 | 0.325 | [ |
活性炭//钛酸锂 | LiPF6-EC/DMC | 1~3 | 69 | 0.38 | [ |
活性炭//硬炭 | LiPF6-EC/DMC/DEC | 2~4 | 110 | 5.7 | [ |
活性炭//四氧化三铁 | LiPF6-EC/DEC | 2~4.5 | 103.7 | 4.687 | [ |
石墨烯//氧化石墨烯 | LiPF6-EC/DMC/DEC | 1.8~4.2 | 148.3 | 7.8 | [ |
多孔炭-石墨烯//石墨 | LiPF6-EC/DEC | 2.2~4.2 | 80 | 352 | [ |
硫氮共掺杂石墨烯//硫氮共掺杂石墨烯 | LiPF6-EC/DEC | 1.5~4.5 | 143 | 13.548 | [ |
介孔炭//二氧化锡-炭 | LiPF6-EC/DMC/EC | 0~4.5 | 110 | 2.96 | [ |
氟磷酸钴锂//活性炭 | LiPF6-EC/DMC | 0~3 | 47 | 1.607 | [ |
硅酸锰锂//多孔炭 | LiPF6-EC/DMC | 0~3 | 54 | 1.5 | [ |
活性炭//中间相碳微球 | LiPF6-EC/DEC | 1.5~3.8 | 97.9 | 0.53 | [ |
活性炭//硬炭 | LiPF6-EC/DEC | 2~4 | 97.2 | 5.412 | [23] |
活性炭//硬炭 | LiPF6-EC/DMC/DEC | 2~4 | 81.1 | 22.3 | [ |
多孔石墨烯// 钛酸锂-炭 | LiPF6-EC/DMC | 1~3 | 72 | 8.3 | [ |
活性炭//钛酸锂-碳纳米管 | LiPF6-EC/DMC | 1.5~2.8 | 84.2 | 0.195 | [ |
多孔氮掺杂炭//氧化锰-石墨烯 | LiPF6-EC/EMC/DMC | 1~4 | 83.25 | 25 | [ |
活性炭//四氧化三铁-石墨烯 | LiPF6-EC/DMC/DEC | 1~4 | 120 | 45.4 | [ |
多孔炭//三氧化二铁@炭 | LiPF6-EC/DEC | 1~4 | 65 | 9.2 | [ |
多孔氮掺杂炭//四氧化三铁@炭 | LiPF6-EC/EMC/DMC | 1~4 | 185 | 28 | [ |
碳纳米片//氧化锰-炭 | LiPF6-EC/DMC | 1~4 | 100 | 20 | [ |
多孔炭//B-Si/SiO2/C | LiPF6-EC/DMC/DEC | 2~4.5 | 128 | 9.704 | [ |
活性炭//中间相碳微球 | LiPF6-EC/DMC/DEC | 2~4 | 83.7 | 8.8 | [ |
活性炭//石墨烯纳米片 | LiPF6-EC/EMC/DMC | 2~4 | 61.7 | 0.222 | [ |
石墨烯//钒酸锂-碳纳米纤维 | LiClO4-EC/DMC/DEC | 0~3.8 | 110 | 3.87 | [ |
磷酸铁锂-活性炭//钛酸锂-炭 | LiPF6-EC/DMC/DEC | 0~3.2 | 124.6 | 0.46 | [ |
表1 不同体系锂离子电容器性能总结
电极材料 | 电解液 | 电压/V | 比能量/W·h·kg-1 | 比功率/kW·kg-1 | 文献 |
---|---|---|---|---|---|
磷酸钒锂-炭//活性炭 | LiPF6-EC/DEC | 1~3 | 27 | 0.325 | [ |
活性炭//钛酸锂 | LiPF6-EC/DMC | 1~3 | 69 | 0.38 | [ |
活性炭//硬炭 | LiPF6-EC/DMC/DEC | 2~4 | 110 | 5.7 | [ |
活性炭//四氧化三铁 | LiPF6-EC/DEC | 2~4.5 | 103.7 | 4.687 | [ |
石墨烯//氧化石墨烯 | LiPF6-EC/DMC/DEC | 1.8~4.2 | 148.3 | 7.8 | [ |
多孔炭-石墨烯//石墨 | LiPF6-EC/DEC | 2.2~4.2 | 80 | 352 | [ |
硫氮共掺杂石墨烯//硫氮共掺杂石墨烯 | LiPF6-EC/DEC | 1.5~4.5 | 143 | 13.548 | [ |
介孔炭//二氧化锡-炭 | LiPF6-EC/DMC/EC | 0~4.5 | 110 | 2.96 | [ |
氟磷酸钴锂//活性炭 | LiPF6-EC/DMC | 0~3 | 47 | 1.607 | [ |
硅酸锰锂//多孔炭 | LiPF6-EC/DMC | 0~3 | 54 | 1.5 | [ |
活性炭//中间相碳微球 | LiPF6-EC/DEC | 1.5~3.8 | 97.9 | 0.53 | [ |
活性炭//硬炭 | LiPF6-EC/DEC | 2~4 | 97.2 | 5.412 | [23] |
活性炭//硬炭 | LiPF6-EC/DMC/DEC | 2~4 | 81.1 | 22.3 | [ |
多孔石墨烯// 钛酸锂-炭 | LiPF6-EC/DMC | 1~3 | 72 | 8.3 | [ |
活性炭//钛酸锂-碳纳米管 | LiPF6-EC/DMC | 1.5~2.8 | 84.2 | 0.195 | [ |
多孔氮掺杂炭//氧化锰-石墨烯 | LiPF6-EC/EMC/DMC | 1~4 | 83.25 | 25 | [ |
活性炭//四氧化三铁-石墨烯 | LiPF6-EC/DMC/DEC | 1~4 | 120 | 45.4 | [ |
多孔炭//三氧化二铁@炭 | LiPF6-EC/DEC | 1~4 | 65 | 9.2 | [ |
多孔氮掺杂炭//四氧化三铁@炭 | LiPF6-EC/EMC/DMC | 1~4 | 185 | 28 | [ |
碳纳米片//氧化锰-炭 | LiPF6-EC/DMC | 1~4 | 100 | 20 | [ |
多孔炭//B-Si/SiO2/C | LiPF6-EC/DMC/DEC | 2~4.5 | 128 | 9.704 | [ |
活性炭//中间相碳微球 | LiPF6-EC/DMC/DEC | 2~4 | 83.7 | 8.8 | [ |
活性炭//石墨烯纳米片 | LiPF6-EC/EMC/DMC | 2~4 | 61.7 | 0.222 | [ |
石墨烯//钒酸锂-碳纳米纤维 | LiClO4-EC/DMC/DEC | 0~3.8 | 110 | 3.87 | [ |
磷酸铁锂-活性炭//钛酸锂-炭 | LiPF6-EC/DMC/DEC | 0~3.2 | 124.6 | 0.46 | [ |
1 | NAOI K , KISU K , IWAMA E , et al . Ultrafast charge–discharge characteristics of a nanosized core-shell structured LiFePO4 material for hybrid supercapacitor applications[J]. Energy Environ. Sci., 2016, 9(6): 2143-2151. |
2 | SATISH R , ARAVINDAN V , LING W C , et al .Carbon-coated Li3V2(PO4)3 as insertion type electrode for lithium-ion hybrid electrochemical capacitors: an evaluation of anode and cathodic performance[J]. Journal of Power Sources, 2015, 281: 310-317. |
3 | BÖCKENFELD N , KÜHNEL R S , PASSERINI S , et al . Composite LiFePO4/AC high rate performance electrodes for Li-ion capacitors[J]. Journal of Power Sources, 2011, 196(8): 4136-4142. |
4 | 张进, 王静, 时志强 . 炭基锂离子电容器的研究进展[J]. 储能科学与技术, 2016, 5(6): 807-815. |
ZHANG J , WANG J , SHI Z Q . Research progress of carbon-based lithium ion capacitor[J]. Energy Storage Science and Technology, 2016, 5(6): 807-815. | |
5 | 郑宗敏, 张鹏, 阎兴斌 . 锂离子混合超级电容器电极材料研究进展[J]. 科学通报, 2013, 58(31): 3115-3123. |
ZHENG Z M , ZHANG P , YAN X B . Progrss in electrode materials for lithium ion hybrid supercapacitor[J]. Chinese Science Bulletin, 2013, 58(31): 3115-3123. | |
6 | JAIN A , ARAVINDAN V , JAYARAMAN S , et al . Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors[J]. Scientific Reports, 2013, 3(1): 3002. |
7 | 郭华军, 杨哲伟, 王志兴, 等 . 一种剑麻纤维活性炭的制备方法及该剑麻纤维活性炭在锂离子电容器中的应用: CN 106365163 A [P]. 2017-02-01. |
GUO H J , YANG Z W , WANG Z X , et al . Preparation of sisal fiber activated carbon and its application in lithium ion capacitor: CN 106365163 A [P]. 2017-02-01. | |
8 | SHI R Y , HAN C P , XU X F , et al . Electrospun N-doped hierarchical porous carbon nanofiber with improved graphitization degree for high performance lithium ion capacitor[J]. Chemistry: A European Journal, 2018, 24(41): 10460-10467. |
9 | JANG B Z , LIU C G , NEFF D , et al . Graphene surface-enabled lithium ion-exchanging cells: next-generation high-power energy storage devices[J]. Nano Letters, 2011, 11(9): 3785-3791. |
10 | ZHANG T F , ZHANG F , ZHANG L , et al . High energy density Li-ion capacitor assembled with all graphene-based electrodes[J]. Carbon, 2015, 92: 106-118. |
11 | 宗军, 刁玉琦, 丁飞, 等 . 锂离子电容器用氧化石墨正极材料研究[J]. 电源技术, 2017, 41(4): 592-594. |
ZONG J , DIAO Y Q , DING F , et al . Study on cathode material of graphite oxide in lithium-ion capacitor[J]. Chinese Journal of Power Sources, 2017, 41(4): 592-594. | |
12 | SONG X Y , MA X L, NING G Q , et al . The orientation construction of S and N dual-doped discoid-like graphene with high-rate electrode property[J]. Applied Surface Science, 2018, 442: 467-475. |
13 | YU X L , ZHAN C Z , LV R , et al . Ultrahigh-rate and high-density lithium-ion capacitors through hybriding nitrogen-enriched hierarchical porous carbon cathode with prelithiated microcrystalline graphite anode[J]. Nano Energy, 2015, 15: 43-53. |
14 | QU W H , HAN F , LU A H , et al . Combination of a SnO2-C hybrid anode and a tubular mesoporous carbon cathode in a high energy density non-aqueous lithium ion capacitor: preparation and characterisation[J]. Journal of Materials Chemistry A, 2014, 2(18): 6549. |
15 | 毕文英 . LiMn2O4/AC体系电化学混合电容器的研究[D]. 天津: 天津大学, 2007. |
BI W Y . Study on LiMn2O4/AC electrochemical hybrid capacitor[D]. Tianjin: Tianjin University, 2007. | |
16 | 杨柳, 齐力, 王宏宇 . 活性炭/LiNi0.5Mn1.5O4电容器性能及活性炭负极的劣化分析[J]. 应用化学, 2015, 32(11): 1327-1334. |
YANG L , QI L , WANG H Y . Properties of activated carbon/LiNi0.5Mn1.5O4 capacitors and degradation analysis of activated carbon anode[J]. Chinese Journal of Applied Chemistry, 2015, 32(11): 1327-1334. | |
17 | KARTHIKEYAN K , AMARESH S , KIM K J, et al . A high performance hybrid capacitor with Li2CoPO4F cathode and activated carbon anode[J]. Nanoscale, 2013, 5(13): 5958-5964. |
18 | 曲文慧 . 高比能量锂离子电容器的构筑及其电化学性能研究[D]. 大连: 大连理工大学, 2016. |
QU W H . Construction of lithium ion capacitor with high specific energy density and its electrochemical performance[D]. Dalian: Dalian University of Technology, 2016. | |
19 | 杨梦 . 基于磷酸铁锂/多孔炭体系的锂离子电容器电极材料的性能研究[D]. 北京: 北京工业大学, 2017. |
YANG M . The performance of electrode materials of lithium ion capacitors based on the system of lithium ion phosphate/porous carbon[D]. Beijing: Beijing University of Chemical Technology, 2017. | |
20 | 平丽娜 . 石墨负极锂离子电容器性能的研究[D]. 天津: 天津大学, 2012. |
PING L N . Study on performance of lithium-ion capacitor using graphite as negative electrode[D]. Tianjin: Tianjin University, 2012. | |
21 | SIVAKKUMAR S R , NERKAR J Y , PANDOLFO A G . Rate capability of graphite materials as negative electrodes in lithium-ion capacitors[J]. Electrochimica Acta, 2010, 55(9): 3330-3335. |
22 | 平丽娜, 郑嘉明, 时志强, 等 . 以预锂化中间相碳微球为负极的锂离子电容器的电化学性能[J]. 物理化学学报, 2012, 28(7): 1733-1738. |
PING L N , ZHENG J M , SHI Z Q , et al . Electrochemical performance of lithium ion capacitors using Li+-intercalated mesocarbon microbeads as the negative electrode[J]. Acta Physico-Chimica Sinica, 2012, 28(7): 1733-1738. | |
24 | 郭雪飞 . AC/Li4Ti5O12电化学混合电容器性能的研究[D]. 天津: 天津大学, 2006. |
GUO X F . Study on performance of AC/Li4Ti5O12 electrochemical hybrid capacitor[D]. Tianjin: Tianjin University, 2006. | |
刘嫄嫄, 时志强, 乔志军, 等 . 大容量锂离子电容器用锂化硬炭负极[J]. 化学工业与工程, 2015, 32(6): 36-40. | |
LIU Y Y , SHI Z Q , QIAO Z J , et al . High energy lithium ion capacitor with pre-lithiated hard carbon anode[J]. Chemical Industry and Engineering, 2015, 32(6): 36-40. | |
25 | 李钊, 孙现众, 李晨, 等 . 介孔石墨烯/炭黑复合导电剂在锂离子电容器负极中的应用[J]. 储能科学与技术, 2017, 6(6): 1264-1272. |
LI Z , SUN X Z , LI C , et al . Application of mesoporous graphene/carbon black composite conductive additive in lithium-ion capacitor anode[J]. Energy Storage Science and Technology, 2017, 6(6): 1264-1272. | |
26 | XU N S , SUN X Z , ZHANG X , et al . A two-step method for preparing Li4Ti5O12 -graphene as an anode material for lithium-ion hybrid capacitors[J]. Royal Society of Chemistry, 2015, 5: 94361-94368. |
27 | YE L , LIANG Q H , LEI Y , et al . A high performance Li-ion capacitor constructed with Li4Ti5O12/C hybrid and porous graphene macroform[J]. Journal of Power Sources, 2015, 282: 174-178. |
28 | ZHANG X , LU C X , PENG H F , et al . Influence of sintering temperature and graphene additives on the electrochemical performance of porous Li4Ti5O12 anode for lithium ion capacitor[J]. Electrochimica Acta, 2017, 246: 1237-1247. |
29 | LEE B G, LEE S H, AHN H J, et al . High performance hybrid supercapacitors using granule Li4Ti5O12/Carbon nanotube anode[J]. Journal of Alloys and Compounds, 2018, 748: 882-888. |
30 | 张宇斐 . 新型过渡金属化合物液相制备及其电化学储能性能研究[D]. 呼和浩特: 内蒙古大学, 2017. |
ZHANG Y F . Synthesis of novel transition metal compounds in liquid phase and their performance in energy storage[D]. Hohhot: Inner Mongolia University, 2017. | |
31 | YANG M , ZHONG Y R , REN J J , et al . Fabrication of high-power Li-ion hybrid supercapacitors by enhancing the exterior surface charge storage[J]. Adv. Energy Mater., 2015, 5: 1500550. |
32 | ZHANG S J , LI C , ZHANG X , et al . High performance lithium-ion hybrid capacitors employing Fe3O4-graphene composite anode and activated carbon cathode[J]. ACS Apple. Mater. Interfaces, 2017, 9(20): 17136-17144. |
33 | YU X L , DENG J J , ZHAN C Z , et al . A high-power lithium-ion hybrid electrochemical capacitor based on citrate-derived electrodes[J]. Electrochimica Acta, 2017, 228: 76-81. |
34 | AN C H , LIU X Z , GAO Z , et al . Filling and unfilling carbon capsules with transition metal oxide nanoparticles for Li-ion hybrid supercapacitors: towards hundred grade energy density[J]. Science China Materials, 2017, 60(3): 217-227. |
35 | ZHAO Y M , CUI Y P , SHI J , et al . Two-dimensional biomass-derived carbon nanosheets and MnO/carbon electrodes for high-performance Li-ion capacitors[J]. Journal of Materials Chemistry A, 2017, 5: 15243-15252. |
36 | FLEISCHMANN S , ZEIGER M , QUADE A , et al . Atomic layer-deposited molybdenum oxide/carbon nanotube hybrid electrodes: the influence of crystal structure on lithium-ion capacitor performance[J]. Applied Materials & Interfaces, 2018, 10(22): 18675-18684. |
37 | XU J , LIAO Z H , ZHANG J B , et al . Heterogeneous phosphorus-doped WO3- x /nitrogen-doped carbon nanowires with high rate and long life for advanced lithium-ion capacitors[J]. Journal of Materials Chemistry A, 2018, 6: 6916-6921. |
38 | YI R , CHEN S , SONG J X , et al . High-performance hybrid supercapacitor enabled by a high-rate Si‐based anode[J]. Advanced Functional Materials. 2014, 24: 7433-7439. |
39 | 安仲勋, 颜亮亮, 夏恒恒, 等 . 锂离子电容器研究进展及示范应用[J]. 中国材料进展, 2016, 35(7): 528-536. |
AN Z X , YAN L L , XIA H H , et al . Research progress and pilot application of lithium-ion capacitor[J]. Materials China, 2016, 35(7): 528-536. | |
40 | ARAVINDAN V , LEE Y S, MADHAVI S . Best practices for mitigating irreversible capacity loss of negative electrodes in Li-ion batteries[J]. Advanced Energy Materials, 2017, 7(17): 1602607. |
41 | ZHANG S S . Eliminating pre-lithiation step for making high energy density hybrid Li-ion capacitor[J]. Journal of Power Sources, 2017, 343: 322-328. |
42 | ZHANG S S . A cost-effective approach for practically viable Li-ion capacitors by using Li2S as an in situ Li-ion source material[J]. Journal of Materials Chemistry A, 2017, 5(27): 14286-14293. |
43 | 张世佳, 张熊, 孙现众, 等 . 中间相炭微球负极预嵌锂量对软包装锂离子电容器性能的影响[J]. 储能科学与技术, 2016, 5(6): 834-840. |
ZHANG S J , ZHANG X , SUN X Z , et al . Effect of the pre-lithiation capacity of mesocarbon microbeads anode on the performances of a flexible packaging lithium ion capacitors[J]. Energy Storage Science and Technology, 2016, 5(6): 834-840. | |
44 | 袁美蓉, 刘伟强, 朱永法, 等 . 负极预嵌锂方式对锂离子电容器性能的影响[J]. 材料导报, 2013, 27(8): 14-16. |
YUAN M R , LIU W Q , ZHU Y F , et al . Influence of Li intercalation mode on the performance of lithium ion capacitors[J]. Materials Review, 2013, 27(8): 14-16. | |
45 | REN J J , SU L W , QIN X , et al . Pre-lithiated graphene nanosheets as negative electrode materials for Li-ion capacitors with high power and energy density[J]. Journal of Power Sources, 2014, 264: 108-113. |
46 | 孙现众, 张熊, 黄博, 等 . 隔膜对双电层电容器和混合型电池-超级电容器的电化学性能的影响[J]. 物理化学学报, 2014, 30(3): 485-491. |
SUN X Z , ZHANG X , HUANG B , et al . Effects of separator on the electrochemical performance of electrical double-layer capacitor and hybrid battery-supercapacitor[J]. Acta Physico-Chimica Sinica, 2014, 30(3): 485-491. | |
47 | LI B , ZHENG J S , ZHANG H Y , et al . Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors[J]. Advanced Materials, 2018, 30: 1705670. |
48 | 刘胜奇 . 混合盐(LiPF6+Et4NBF4)用于超级电容电池(LiMn2O4+AC/LiTi5O12)电解液的研究[D]. 长沙: 中南大学, 2012. |
LIU S Q . Blend Salts (LiPF6+Et4NBF4) used in electrolyte for super-capacitor batteries (LiMn2O4+AC/LiTi5O12)[D]. Changsha: Central South University, 2012. | |
49 | 颜亮亮, 安仲勋, 吴明霞, 等 . 不同电解质对LiNi1/3Co1/3Mn1/3O2/AC超级电容器性能的影响[J]. 电子元件与材料, 2013, 32(9): 19-22. |
YAN L L , AN Z X , WU M X , et al . Influences of different electrolytes on performance of LiNi1/3Co1/3Mn1/3O2/AC supercapacitor[J]. Electronic Components & Materials, 2013, 32(9): 19-22. | |
50 | 张一凡, 袁平, 杨佩瑜, 等 . 新型锂离子超级电容器用聚合物电解质研究[J]. 上海航天, 2017, 34(3): 148-154. |
ZHANG Y F , YUAN P , YANG P Y , et al . Study on polymer electrolyte for lithium ion supercapacitor[J]. Aerospace Shanghai, 2017, 34(3): 148-154. | |
51 | WANG F , LIU Z , YUAN X , et al . A quasi-solid-state Li-ion capacitor with high energy density based on Li3VO4/Carbon nanofibers and electrochemically-exfoliated graphene sheets [J]. J. Mater. Chem. A, 2017, 5(28): 14922-14929. |
52 | 王亚彬, 聂俊平, 李文生, 等 . 锂盐/活性炭混合电极电池-电容器研究[J]. 电子元件与材料, 2016, 35(9): 64-69. |
WANG Y B , NIE J P , LI W S , et al . Lithium salt /activated carbon hybrid electrode capacitor-battery[J]. Electronic Components & Materials, 2016, 35(9): 64-69. | |
53 | WANG H , YOSHIO M . Performance of AC/graphite capacitors at high weight ratios of AC/graphite[J]. Journal of Power Sources, 2008, 177: 681-684. |
54 | DSOKE S , FUCHS B , GUCCIARDI E , et al . The importance of the electrode mass ratio in a Li-ion capacitor based on activated carbon and Li4Ti5O12 [J]. Journal of Power Sources, 2015, 282: 385-393. |
55 | 张进 . 高比能锂离子电容器的设计与电化学性能研究[D]. 天津: 天津工业大学, 2016. |
ZHANG J . Design of high specific energy lithium ion capacitors and its electrochemical performance[D]. Tianjin: Tianjin Polytechnic University, 2016. | |
56 | 上海展枭新能源科技有限公司 . 智能装备[EB/OL]. . |
Shanghai Capenergy Technology Co.,Ltd . Intelligent equipment[EB/OL]. . | |
57 | 上海展枭新能源科技有限公司 . 轨道交通[EB/OL]. . |
Shanghai Capenergy Technology Co.,Ltd . Rail transit[EB/OL]. . | |
58 | 上海展枭新能源科技有限公司 . 储能[EB/OL]. . |
Shanghai Capenergy Technology Co.,Ltd . Energy storage[EB/OL]. . | |
59 | 上海展枭新能源科技有限公司 . 新兴业务[EB/OL]. . |
Shanghai Capenergy Technology Co.,Ltd . Emerging business[EB/OL]. . | |
60 | 曾福娣, 阮殿波, 傅冠生 . 锂离子电容器产业前沿技术研究进展[J]. 化学通报, 2015, 78(6): 518-524. |
ZENG F D , RUAN D B , FU G S . Research progress of lithium capacitor industrial frontier technology[J]. Chemistry, 2015, 78(6): 518-524. |
[1] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[2] | 陈飞, 刘成宝, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基超级电容器用电极材料的研究进展[J]. 化工进展, 2023, 42(5): 2566-2576. |
[3] | 刘静, 林琳, 张健, 赵峰. 生物质基炭材料孔径调控及电化学性能研究进展[J]. 化工进展, 2023, 42(4): 1907-1916. |
[4] | 蔡江涛, 候刘华, 兰雨金, 张晨陈, 刘国阳, 朱由余, 张建兰, 赵世永, 张亚婷. 沥青基多孔炭材料的制备及在超级电容器中的应用进展[J]. 化工进展, 2023, 42(4): 1895-1906. |
[5] | 卓祖优, 宋生南, 黄明堦, 杨旋, 卢贝丽, 陈燕丹. 草酸钾-尿素协同活化法制备超大比表面积面粉基多级孔炭及其电化学储能应用[J]. 化工进展, 2023, 42(2): 925-933. |
[6] | 田甜, 雷西萍, 于婷, 樊凯, 宋晓琪, 朱航. 碳材料在柔性超级电容器中的研究进展[J]. 化工进展, 2023, 42(2): 884-896. |
[7] | 龙垠荧, 杨健, 管敏, 杨怡洛, 程正柏, 曹海兵, 刘洪斌, 安兴业. 木质素基材料在混合型超级电容器电极材料中的研究进展[J]. 化工进展, 2022, 41(9): 4855-4865. |
[8] | 徐虎, 郭泓凯, 柴昌盛, 郝相忠, 杨子元, 徐卫军. 碳纤维类材料用于电芬顿体系电极的研究现状[J]. 化工进展, 2022, 41(7): 3707-3718. |
[9] | 郭冠伦, 刘锐, 余洋洋, 汪云. 塑料衍生碳材料用于超级电容器的研究现状[J]. 化工进展, 2022, 41(2): 781-790. |
[10] | 马爱玲, 黄光许, 耿乾浩, 姚友恒, 李媛媛, 刘迎宾. 硼/氮共掺杂多孔碳纳米片的制备及其电化学性能[J]. 化工进展, 2021, 40(8): 4388-4396. |
[11] | 何广源, 陈学敏, 王雨婷, 李发堂, 张子健, 许文浩. 钴酸镍基纳米材料在超级电容器中的研究进展[J]. 化工进展, 2021, 40(7): 3813-3825. |
[12] | 侯璐, 胡友仁, 李文翠, 董晓玲, 陆安慧. 富氧多孔炭的合成及其在电化学储能中的作用[J]. 化工进展, 2021, 40(6): 3020-3033. |
[13] | 陈少华, 陈文良, 丁益, 赵东林, 谢发之, 任启芳. 纳米材料及其三维结构修饰电极检测多巴胺的研究进展[J]. 化工进展, 2021, 40(11): 6135-6144. |
[14] | 邓秀春, 卓祖优, 白小杰, 孙杰, 陈燕丹. 银耳菌糠衍生的三维多级孔炭及其电化学应用性能[J]. 化工进展, 2021, 40(10): 5642-5651. |
[15] | 郭志远, 纪志永, 陈华艳, 时雅滨, 张帆, 赵颖颖, 刘杰, 袁俊生. 电化学提锂技术中电极材料和电极体系的研究进展[J]. 化工进展, 2020, 39(6): 2294-2303. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |