化工进展 ›› 2019, Vol. 38 ›› Issue (03): 1579-1586.DOI: 10.16085/j.issn.1000-6613.2018-0971
于伟静1(),汪永威2,吕小林2,熊远南2,龙腾3,李培正4
收稿日期:
2018-05-10
修回日期:
2018-10-31
出版日期:
2019-03-05
发布日期:
2019-03-05
作者简介:
于伟静(1990—),男,硕士,研究方向为电力环保。E-mail:
Weijing YU1(),Yongwei WANG2,Xiaolin LÜ2,Yuannan XIONG2,Teng LONG3,Peizheng LI4
Received:
2018-05-10
Revised:
2018-10-31
Online:
2019-03-05
Published:
2019-03-05
摘要:
随着多地政府出台政策,燃煤电厂白色烟羽的控制引发广泛关注。为评价白色烟羽控制的影响,本文建立了潜值计算模型,对2017年上海市和天津市白色烟羽的消除效果进行了研究,结果表明烟气冷凝、烟气加热、烟气冷凝再热均无法完全消除白色烟羽,特别是在冬季和北方城市(天津市)控制效果较差。以某燃煤电厂为例,对模型的应用效果进行了验证,结果表明潜值模型用于白色烟羽的评价具有一定的适用性,但气象数据测量误差会在一定程度上影响评价的精确度。此外,对白色烟羽控制对脱硫系统、烟气焓值和环境影响进行了研究,表明白色烟羽控制会改变脱硫系统的水平衡、影响燃煤电厂能耗且对环境造成一定的消极影响,因此目前燃煤电厂白色烟羽控制不具有推广性。
中图分类号:
于伟静,汪永威,吕小林,熊远南,龙腾,李培正. 燃煤电厂白色烟羽的潜值和控制策略评价[J]. 化工进展, 2019, 38(03): 1579-1586.
Weijing YU,Yongwei WANG,Xiaolin LÜ,Yuannan XIONG,Teng LONG,Peizheng LI. Evaluation of potential and control strategy of white plume in the coal-fired power plants[J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1579-1586.
控制温度/℃ | 临界温度/℃ | |
---|---|---|
烟气加热 | 烟气冷凝再热 | |
50 | 27.9 | 14.1 |
55 | 18.1 | 10.3 |
60 | 14.3 | 7.6 |
65 | 11.6 | 5.5 |
70 | 9.4 | 3.8 |
75 | 7.6 | 2.3 |
80 | 6.1 | 1 |
表2 控制技术的临界温度
控制温度/℃ | 临界温度/℃ | |
---|---|---|
烟气加热 | 烟气冷凝再热 | |
50 | 27.9 | 14.1 |
55 | 18.1 | 10.3 |
60 | 14.3 | 7.6 |
65 | 11.6 | 5.5 |
70 | 9.4 | 3.8 |
75 | 7.6 | 2.3 |
80 | 6.1 | 1 |
图 | 吸收塔出口烟气温度/℃ | 烟囱入口烟气温度/℃ | 环境温度 /℃ | 环境湿度 /% | 潜值 |
---|---|---|---|---|---|
(a) | 49.55 | 81.62 | 18 | 99 | 102.4 |
(b) | 48.87 | 79.04 | 20 | 93 | 0 |
(c) | 49.11 | 77.93 | 18 | 99 | 224.9 |
(d) | 50.11 | 79.64 | 17 | 96 | 287.4 |
(e) | 49.81 | 79.04 | 17 | 96 | 235 |
(f) | 48.84 | 80.34 | 18 | 100 | 149.7 |
(g) | 48.72 | 77.69 | 20 | 86 | 0 |
(h) | 49.94 | 82.07 | 20 | 86 | 0 |
表3 白色烟羽评价模型验证参数
图 | 吸收塔出口烟气温度/℃ | 烟囱入口烟气温度/℃ | 环境温度 /℃ | 环境湿度 /% | 潜值 |
---|---|---|---|---|---|
(a) | 49.55 | 81.62 | 18 | 99 | 102.4 |
(b) | 48.87 | 79.04 | 20 | 93 | 0 |
(c) | 49.11 | 77.93 | 18 | 99 | 224.9 |
(d) | 50.11 | 79.64 | 17 | 96 | 287.4 |
(e) | 49.81 | 79.04 | 17 | 96 | 235 |
(f) | 48.84 | 80.34 | 18 | 100 | 149.7 |
(g) | 48.72 | 77.69 | 20 | 86 | 0 |
(h) | 49.94 | 82.07 | 20 | 86 | 0 |
1 | 浙江省人民政府 . 燃煤电厂大气污染物排放标准: DB33/2147—2018 [S]. 2018. |
The People's Government of Zhejiang Province . Emission standard of air pollutants for coal-fired power plants: DB33/2147—2018[S]. 2018. | |
2 | 上海市环境保护局 . 上海市燃煤电厂石膏雨和有色烟羽测试技术要求(试行)[EB/OL]. . |
Shanghai Environmental Protection Bureau . Technical requirements for testing gypsum rain and non-ferrous plume in Shanghai coal-fired power plant (Trial Implementation) [EB/OL]. . | |
3 | 天津市环境保护局, 天津市市场和质量监督管委会 . 火电厂大气污染物排放标准: DB12/810—2018 [S]. 2018. |
Tianjin Environmental Protection Bureau,Tianjin Market and Quality Supervision and Management Committee . Emission standard of air pollutants for thermal power plants: DB12/810—2018[S]. 2018. | |
4 | 河北省钢铁、焦化、燃煤电厂深度减排攻坚方案 [EB/OL]. . |
Deep emission reduction solutions for iron and steel , coking and coal-fired power plants in Hebei province[EB/OL]. . | |
5 | 徐州市 2018年大气污染防治攻坚行动方案[EB/OL]. . |
Action plan for air pollution prevention and control in Xuzhou city in 2018[EB/OL ]. . | |
6 | 临汾市人民政府 . 全市生态环境治理“春季攻势”行动方案[EB/OL]. . |
The People's Government of Linfen City . Action plan of "Spring Offensive " for urban ecological environment control[EB/OL]. . | |
7 | WANG J , WANG S , XU X , et al . Evaluation of alternative arrangements of a heat pump system for plume abatement in a large-scale chiller plant in a subtropical region[J]. Energy & Buildings, 2009, 41(6): 596-606. |
8 | WANG S W , TYAGI S K , SHARMA A , et al . Application of solar collectors to control the visible plume from wet cooling towers of a commercial building in Hong Kong: a case study[J]. Applied Thermal Engineering, 2007, 27(8/9): 1394-1404. |
9 | MORTENSEN K . Use of air2airTM technology to recover fresh-water from the normal evaporative cooling loss at coal-based thermoelectric power plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 92(3): 704-8. |
10 | DEZIANI M , RAHMANI K , ROUDAKI S J M , et al . Feasibility study for reduce water evaporative loss in a power plant cooling tower by using air to air heat exchanger with auxiliary fan[J]. Desalination, 2017, 406: 119-124. |
11 | HUBBARD B J , MOCKRY E F , KINNEY O L . Air-to-air atmospheric exchanger for condensing cooling tower effluent: US 6663694B2[P]. 2003. |
12 | XU X , WANG S , MA Z . Evaluation of plume potential and plume abatement of evaporative cooling towers in a subtropical region[J]. Applied Thermal Engineering, 2008, 28(11):1471-1484. |
13 | TYAGI S K , WANG S , MA Z . Prediction, potential and control of plume from wet cooling tower of commercial buildings in Hong Kong: a case study[J]. International Journal of Energy Research, 2007, 31(8):778–795. |
14 | TYAGI S K , WANG S , PARK S R , et al . Economic considerations and cost comparisons between the heat pumps and solar collectors for the application of plume control from wet cooling towers of commercial buildings[J]. Renewable & Sustainable Energy Reviews, 2008, 12(8):2194-2210. |
15 | WINTER A R . Control of visible plumes from cooling towers[J]. Proceedings of the Institution of Mechanical Engineers Part A: Journal of Power & Energy, 1997, 211(1):67-72. |
16 | TAKATA K , MICHIOKA T , KUROSE R . Prediction of a visible plume from a dry and wet combined cooling tower and its mechanism of abatement[J]. Atmosphere, 2016, 7(4):59. |
17 | CHAN M H . Cooling tower performance analysis and visible air plume abatement in buildings situated in temperate climate zone[D]. Cardiff: Cardiff University, 2015. |
18 | KOUCHI A , OHBA R , OKABAYASHI K , et al . Prediction technique for visible plume from cooling tower[R]. Curriculum Planning Knowledge & Research in Educationalences, 1999. |
19 | MICHIOKA T , SATO A , KANZAKI T , et al . Wind tunnel experiment for predicting a visible plume region from a wet cooling tower[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2007, 95(8):741-754. |
20 | LIU M , QIN Y , YAN H , et al . Energy and water conservation at lignite-fired power plants using drying and water recovery technologies[J]. Energy Conversion & Management, 2015, 105:118-126. |
21 | JIA L , PENG X F , SUN J D , et al . An experimental study on vapor condensation of wet flue gas in a plastic heat exchanger[J]. Heat Transfer——Asian Research, 2001, 30(7):571–580. |
22 | HAN X , YAN J , KARELLAS S , et al . Water extraction from high moisture lignite by means of efficient integration of waste heat and water recovery technologies with flue gas pre-drying system[J]. Applied Thermal Engineering, 2016, 110:442-456. |
23 | LEVY E , BILIRGEN H , DUPOINT J . Recovery of water from boiler flue gas using condensing heat exchangers[R]. Lehigh University, 2011. |
24 | JEONG K , KESSEN M J , BILIRGEN H , et al . Analytical modeling of water condensation in condensing heat exchanger[J]. International Journal of Heat & Mass Transfer, 2010, 53(11):2361-2368. |
25 | JEONG K . Condensation of water vapor and sulfuric acid in boiler flue gas[D]. Bethlehem: Lehigh University, 2009. |
26 | CHEN H , ZHOU Y , SUN J , et al . An experimental study of membranes for capturing water vapor from flue gas[J]. Journal of the Energy Institute, 2017, 91(3): 339-348. |
27 | SIJBESMA H , NYMEIJER K , MARWIJK R VAN , et al . Flue gas dehydration using polymer membranes[J]. Journal of Membrane Science, 2008, 313(1/2): 263-276. |
28 | MACEDONIO F , CERSOSIMO M , BRUNETTI A , et al . Water recovery from humidified waste gas streams: quality control using membrane condenser technology[J]. Chemical Engineering and Processing: Process Intensification, 2014, 86: 196-203. |
29 | WANG D , BAO A , KUNC W , et al . Coal power plant flue gas waste heat and water recovery[J]. Applied Energy, 2012, 91(1): 341-348. |
30 | DAAL L , KAMPHUIS H , STAM A , et al . Evaluation of different water vapor capture technologies and energy modeling results for membrane technology[R]. DNV-KEMA, 2012. |
31 | 刘俊吉, 周亚平, 李松林 . 物理化学[M]. 北京: 高等教育出版社, 2009. |
LIU Junji , ZHOU Yaping , LI Songlin . Physical chemistry[J]. Beijing: High Education Press, 2009. | |
32 | 朱文斌, 王定 . 石灰石石膏湿法烟气脱硫吸收塔出口烟气温度及蒸发水量的计算分析与修正[J]. 锅炉技术, 2007, 38(4):68-71. |
ZHU Wenbin , WANG Ding . Calculation,analysis and modification regarding outlet flue gas temperature and vaporized water quantity of absorber for limestone-gypsum wet FGD[J]. Boiler Technology, 2007, 38(4): 68-71. | |
33 | 于才渊,王宝和,王喜忠 . 喷雾干燥技术[M]. 北京: 化学工业出版社, 2013. |
YU Caiyuan , WANG Baohe , WANG Xizhong . Spray drying technology[M]. Beijing: Chemical Industry Press, 2013. | |
34 | undergoround Weather [EB/OL]. . |
35 | MEIJ R . Trace element behavior in coal-fired power plants[J]. Fuel Processing Technology, 1994, 39(1/2/3): 199-217. |
36 | 王珲, 宋蔷, 姚强, 等 . 电厂湿法脱硫系统对烟气中细颗粒物脱除作用的实验研究[J]. 中国电机工程学报, 2008, 28(5):1-7. |
WANG Hui , SONG Qiang , YAO Qiang , et al . Experimental study on removal effect of wet flue gas desulfurization system on fine particles from a coal-fired power plant[J]. Proceedings of the CSEE, 2008, 28(5):1-7. | |
37 | 王树民, 宋畅, 陈寅彪, 等 . 燃煤电厂大气污染物“近零排放”技术研究及工程应用[J]. 环境科学研究, 2015, 28(4):487-494. |
WANG Shumin , SONG Chang , CHEN Yinbiao , et al . Technology research and engineering applications of near-zero air pollutant emission coal-fired power plants[J]. Research of Environmental Sciences, 2015, 28(4):487-494. | |
38 | 王东歌, 朱法华, 易玉萍, 等 . 基于实测的湿法脱硫系统对颗粒物去除效果的研究[J]. 环境监测管理与技术, 2015, 27(5): 21-24. |
WANG Dongge , ZHU Fahua , YI Yuping , et al . Removal efficiency of WFGD system to particles based on field tests[J].The Administration and Technique of Environmental Monitoring, 2015, 27(5): 21-24. | |
39 | DEBRA Tan, FENG Hu , Thieriot HUBER , et al . Towards a water &energy secure China[R]. China Water Risk, 2015. |
40 | LI Zhen , JIANG Jingkun , Zizhen MA , et al . Influence of flue gas desulfurization (FGD) installations on emission characteristics of PM2.5 from coal-fired power plants equipped with selective catalytic reduction (SCR)[J]. Environmental Pollution, 2017, 230: 655-662. |
[1] | 郑成强, 李小龙, 李军状, 段玖祥, 杨林军. 燃煤电厂逃逸氨迁移转化特性研究进展[J]. 化工进展, 2022, 41(2): 964-973. |
[2] | 于洋, 周欣, 程俊峰, 董长青, 王玉山, 刘英华. 燃煤电厂可凝结颗粒物检测方法、排放特征及脱除技术研究进展[J]. 化工进展, 2021, 40(8): 4515-4524. |
[3] | 马双忱, 林宸雨, 周权, 吴忠胜, 刘琦, 陈文通, 樊帅军, 要亚坤, 马采妮. 基于深度神经网络的脱硫系统预测模型及应用[J]. 化工进展, 2021, 40(3): 1689-1698. |
[4] | 于伟静, 马超, 谭闻濒, 崔磊, 陈玉彬, 李昌浩. 燃煤电厂白色烟羽控制研究进展[J]. 化工进展, 2020, 39(S1): 232-241. |
[5] | 黄泽健,罗祎青,袁希钢. 水处理集成微藻生物柴油生命周期系统环境影响评价[J]. 化工进展, 2020, 39(1): 34-41. |
[6] | 林海周, 罗海中, 裴爱国, 方梦祥. 燃煤电厂烟气MDEA/PZ混合胺法碳捕集工艺模拟分析[J]. 化工进展, 2019, 38(04): 2046-2055. |
[7] | 林海周, 裴爱国, 方梦祥. 燃煤电厂烟气二氧化碳胺法捕集工艺改进研究进展[J]. 化工进展, 2018, 37(12): 4874-4886. |
[8] | 马双忱, 范紫瑄, 温佳琪, 马岚, 赵保华, 张金柱, 孙尧. 基于模糊层次分析的燃煤电厂脱硫废水处理可利用技术评价[J]. 化工进展, 2018, 37(11): 4451-4459. |
[9] | 刘含笑, 姚宇平, 郦建国, 何毓忠, 陈招妹, 郭滢, 郭峰, 方小伟. 基于多尺度集成/多场协同/多相耦合的PM2.5团聚技术[J]. 化工进展, 2017, 36(S1): 500-505. |
[10] | 于伟静. 燃煤电厂烟尘超低排放技术研究现状及发展[J]. 化工进展, 2017, 36(S1): 428-435. |
[11] | 孙亚伟, 谢美连, 刘庆岭, 马德刚, 纪娜, 宋春风. 膜法分离燃煤电厂烟气中CO2的研究现状及进展[J]. 化工进展, 2017, 36(05): 1880-1889. |
[12] | 张胜寒, 孙晨皓, 陈玉强. 燃煤电厂脱硫废水中硒元素脱除技术研究进展[J]. 化工进展, 2017, 36(04): 1460-1469. |
[13] | 张彩珠,王春燕,陈 珊,魏顺安 . 亚临界燃煤电厂的用能分析[J]. 化工进展, 2013, 32(06): 1278-1282. |
[14] | 马保国,谭洪波,潘 伟,李 亮. 聚羧酸减水剂的两亲匹配 [J]. 化工进展, 2007, 26(12): 1776-. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 400
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 280
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |