1 |
浙江省人民政府 . 燃煤电厂大气污染物排放标准: DB33/2147—2018 [S]. 2018.
|
|
The People's Government of Zhejiang Province . Emission standard of air pollutants for coal-fired power plants: DB33/2147—2018[S]. 2018.
|
2 |
上海市环境保护局 . 上海市燃煤电厂石膏雨和有色烟羽测试技术要求(试行)[EB/OL]. .
|
|
Shanghai Environmental Protection Bureau . Technical requirements for testing gypsum rain and non-ferrous plume in Shanghai coal-fired power plant (Trial Implementation) [EB/OL]. .
|
3 |
天津市环境保护局, 天津市市场和质量监督管委会 . 火电厂大气污染物排放标准: DB12/810—2018 [S]. 2018.
|
|
Tianjin Environmental Protection Bureau,Tianjin Market and Quality Supervision and Management Committee . Emission standard of air pollutants for thermal power plants: DB12/810—2018[S]. 2018.
|
4 |
河北省钢铁、焦化、燃煤电厂深度减排攻坚方案 [EB/OL]. .
|
|
Deep emission reduction solutions for iron and steel , coking and coal-fired power plants in Hebei province[EB/OL]. .
|
5 |
徐州市 2018年大气污染防治攻坚行动方案[EB/OL]. .
|
|
Action plan for air pollution prevention and control in Xuzhou city in 2018[EB/OL ]. .
|
6 |
临汾市人民政府 . 全市生态环境治理“春季攻势”行动方案[EB/OL]. .
|
|
The People's Government of Linfen City . Action plan of "Spring Offensive " for urban ecological environment control[EB/OL]. .
|
7 |
WANG J , WANG S , XU X , et al . Evaluation of alternative arrangements of a heat pump system for plume abatement in a large-scale chiller plant in a subtropical region[J]. Energy & Buildings, 2009, 41(6): 596-606.
|
8 |
WANG S W , TYAGI S K , SHARMA A , et al . Application of solar collectors to control the visible plume from wet cooling towers of a commercial building in Hong Kong: a case study[J]. Applied Thermal Engineering, 2007, 27(8/9): 1394-1404.
|
9 |
MORTENSEN K . Use of air2airTM technology to recover fresh-water from the normal evaporative cooling loss at coal-based thermoelectric power plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 92(3): 704-8.
|
10 |
DEZIANI M , RAHMANI K , ROUDAKI S J M , et al . Feasibility study for reduce water evaporative loss in a power plant cooling tower by using air to air heat exchanger with auxiliary fan[J]. Desalination, 2017, 406: 119-124.
|
11 |
HUBBARD B J , MOCKRY E F , KINNEY O L . Air-to-air atmospheric exchanger for condensing cooling tower effluent: US 6663694B2[P]. 2003.
|
12 |
XU X , WANG S , MA Z . Evaluation of plume potential and plume abatement of evaporative cooling towers in a subtropical region[J]. Applied Thermal Engineering, 2008, 28(11):1471-1484.
|
13 |
TYAGI S K , WANG S , MA Z . Prediction, potential and control of plume from wet cooling tower of commercial buildings in Hong Kong: a case study[J]. International Journal of Energy Research, 2007, 31(8):778–795.
|
14 |
TYAGI S K , WANG S , PARK S R , et al . Economic considerations and cost comparisons between the heat pumps and solar collectors for the application of plume control from wet cooling towers of commercial buildings[J]. Renewable & Sustainable Energy Reviews, 2008, 12(8):2194-2210.
|
15 |
WINTER A R . Control of visible plumes from cooling towers[J]. Proceedings of the Institution of Mechanical Engineers Part A: Journal of Power & Energy, 1997, 211(1):67-72.
|
16 |
TAKATA K , MICHIOKA T , KUROSE R . Prediction of a visible plume from a dry and wet combined cooling tower and its mechanism of abatement[J]. Atmosphere, 2016, 7(4):59.
|
17 |
CHAN M H . Cooling tower performance analysis and visible air plume abatement in buildings situated in temperate climate zone[D]. Cardiff: Cardiff University, 2015.
|
18 |
KOUCHI A , OHBA R , OKABAYASHI K , et al . Prediction technique for visible plume from cooling tower[R]. Curriculum Planning Knowledge & Research in Educationalences, 1999.
|
19 |
MICHIOKA T , SATO A , KANZAKI T , et al . Wind tunnel experiment for predicting a visible plume region from a wet cooling tower[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2007, 95(8):741-754.
|
20 |
LIU M , QIN Y , YAN H , et al . Energy and water conservation at lignite-fired power plants using drying and water recovery technologies[J]. Energy Conversion & Management, 2015, 105:118-126.
|
21 |
JIA L , PENG X F , SUN J D , et al . An experimental study on vapor condensation of wet flue gas in a plastic heat exchanger[J]. Heat Transfer——Asian Research, 2001, 30(7):571–580.
|
22 |
HAN X , YAN J , KARELLAS S , et al . Water extraction from high moisture lignite by means of efficient integration of waste heat and water recovery technologies with flue gas pre-drying system[J]. Applied Thermal Engineering, 2016, 110:442-456.
|
23 |
LEVY E , BILIRGEN H , DUPOINT J . Recovery of water from boiler flue gas using condensing heat exchangers[R]. Lehigh University, 2011.
|
24 |
JEONG K , KESSEN M J , BILIRGEN H , et al . Analytical modeling of water condensation in condensing heat exchanger[J]. International Journal of Heat & Mass Transfer, 2010, 53(11):2361-2368.
|
25 |
JEONG K . Condensation of water vapor and sulfuric acid in boiler flue gas[D]. Bethlehem: Lehigh University, 2009.
|
26 |
CHEN H , ZHOU Y , SUN J , et al . An experimental study of membranes for capturing water vapor from flue gas[J]. Journal of the Energy Institute, 2017, 91(3): 339-348.
|
27 |
SIJBESMA H , NYMEIJER K , MARWIJK R VAN , et al . Flue gas dehydration using polymer membranes[J]. Journal of Membrane Science, 2008, 313(1/2): 263-276.
|
28 |
MACEDONIO F , CERSOSIMO M , BRUNETTI A , et al . Water recovery from humidified waste gas streams: quality control using membrane condenser technology[J]. Chemical Engineering and Processing: Process Intensification, 2014, 86: 196-203.
|
29 |
WANG D , BAO A , KUNC W , et al . Coal power plant flue gas waste heat and water recovery[J]. Applied Energy, 2012, 91(1): 341-348.
|
30 |
DAAL L , KAMPHUIS H , STAM A , et al . Evaluation of different water vapor capture technologies and energy modeling results for membrane technology[R]. DNV-KEMA, 2012.
|
31 |
刘俊吉, 周亚平, 李松林 . 物理化学[M]. 北京: 高等教育出版社, 2009.
|
|
LIU Junji , ZHOU Yaping , LI Songlin . Physical chemistry[J]. Beijing: High Education Press, 2009.
|
32 |
朱文斌, 王定 . 石灰石石膏湿法烟气脱硫吸收塔出口烟气温度及蒸发水量的计算分析与修正[J]. 锅炉技术, 2007, 38(4):68-71.
|
|
ZHU Wenbin , WANG Ding . Calculation,analysis and modification regarding outlet flue gas temperature and vaporized water quantity of absorber for limestone-gypsum wet FGD[J]. Boiler Technology, 2007, 38(4): 68-71.
|
33 |
于才渊,王宝和,王喜忠 . 喷雾干燥技术[M]. 北京: 化学工业出版社, 2013.
|
|
YU Caiyuan , WANG Baohe , WANG Xizhong . Spray drying technology[M]. Beijing: Chemical Industry Press, 2013.
|
34 |
undergoround Weather [EB/OL]. .
|
35 |
MEIJ R . Trace element behavior in coal-fired power plants[J]. Fuel Processing Technology, 1994, 39(1/2/3): 199-217.
|
36 |
王珲, 宋蔷, 姚强, 等 . 电厂湿法脱硫系统对烟气中细颗粒物脱除作用的实验研究[J]. 中国电机工程学报, 2008, 28(5):1-7.
|
|
WANG Hui , SONG Qiang , YAO Qiang , et al . Experimental study on removal effect of wet flue gas desulfurization system on fine particles from a coal-fired power plant[J]. Proceedings of the CSEE, 2008, 28(5):1-7.
|
37 |
王树民, 宋畅, 陈寅彪, 等 . 燃煤电厂大气污染物“近零排放”技术研究及工程应用[J]. 环境科学研究, 2015, 28(4):487-494.
|
|
WANG Shumin , SONG Chang , CHEN Yinbiao , et al . Technology research and engineering applications of near-zero air pollutant emission coal-fired power plants[J]. Research of Environmental Sciences, 2015, 28(4):487-494.
|
38 |
王东歌, 朱法华, 易玉萍, 等 . 基于实测的湿法脱硫系统对颗粒物去除效果的研究[J]. 环境监测管理与技术, 2015, 27(5): 21-24.
|
|
WANG Dongge , ZHU Fahua , YI Yuping , et al . Removal efficiency of WFGD system to particles based on field tests[J].The Administration and Technique of Environmental Monitoring, 2015, 27(5): 21-24.
|
39 |
DEBRA Tan, FENG Hu , Thieriot HUBER , et al . Towards a water &energy secure China[R]. China Water Risk, 2015.
|
40 |
LI Zhen , JIANG Jingkun , Zizhen MA , et al . Influence of flue gas desulfurization (FGD) installations on emission characteristics of PM2.5 from coal-fired power plants equipped with selective catalytic reduction (SCR)[J]. Environmental Pollution, 2017, 230: 655-662.
|