[1] DICOSIMO R,MCAULIFFE J,POULOSE A J,et al. Industrial use of immobilized enzymes[J]. Chemical Society Reviews,2013, 42(15):6437-6474.
[2] BRADY D, JORDAAN J, SIMPSON C, et al. Spherezymes:a novel structured self-immobilisation enzyme technology[J]. BMC Biotechnology, 2008, 8:8.
[3] BRADY D, JORDAAN J. Advances in enzyme immobilisation[J]. Biotechnology Letters, 2009, 31(11):1639-1650.
[4] 柯彩霞, 范艳利, 苏枫, 等. 酶的固定化技术最新研究进展[J]. 生物工程学报, 2018, 34(2):1-17. KE Caixia, FAN Yanli, SU Feng, et al. Recent advances in enzyme immobilization[J]. Chinese Journal of Biotechnology, 2018, 34(2):1-17.
[5] SHELDON R A, VAN PELT S. Enzyme immobilisation in biocatalysis:why, what and how[J]. Chemical Society Reviews, 2013, 42(15):6223-6235.
[6] ILLANES A, CAUERHFF A, WILSON L, et al. Recent trends in biocatalysis engineering[J]. Bioresource Technology, 2012, 115:48-57.
[7] SHELDON R A. Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs)[J]. Applied Microbiology and Biotechnology, 2011, 92(3):467-477.
[8] CUI J D, JIA S R. Optimization protocols and improved strategies of cross-linked enzyme aggregates technology:current development and future challenges[J]. Critical Reviews in Biotechnology, 2013, 35(1):15-28.
[9] MOLAWA L, JORDAAN J, LIMSON J, et al. Modification of alcalase SphereZymeTM by entrapment in LentiKats® to impart improved particle stability[J]. Biocatalysis and Biotransformation, 2013, 31(2):71-78.
[10] OVEIMAR BARBOSA A C O B, FERNANDEZ-LAFUENTE R C R D. Glutaraldehyde in biocatalysts design a useful crosslinker and a versatile tool in enzyme immobilization[J]. RSC Advances, 2014, 4(4):1583-1600.
[11] DITZLER L R, SEN A, GANNON M J, et al. Self-assembled enzymatic monolayer directly bound to a gold surface:activity and molecular recognition force spectroscopy studies[J]. Journal of the American Chemical Society, 2011, 133(34):13284-13287.
[12] DICKERSON M B, SANDHAGE K H, NAIK R R. Protein-and peptide-directed syntheses of inorganic materials[J]. Chemical Reviews, 2008, 108(11):4935-4978.
[13] 王生杰, 蔡庆伟, 杜明轩, 等. 二氧化硅的仿生矿化[J]. 化学进展, 2015, 27(2/3):229-241. WANG Shengjie, CAI Qingwei, DU Mingxuan, et al. Biomimetic mineralization of silica[J]. Progress in Chemistry, 2015, 27(2/3):229-241.
[14] LUCKARIFT H R, SPAIN J C, NAIK R R, et al. Enzyme immobilization in a biomimetic silica support[J]. Nature Biotechnology, 2004, 22(2):211-213.
[15] BETANCOR L, LUCKARIFT H R. Bioinspired enzyme encapsulation for biocatalysis[J]. Trends in Biotechnology, 2008, 26(10):566-572.
[16] LUCKARIFT H R, DICKERSON M B, SANDHAGE K H, et al. Rapid, room-temperature synthesis of antibacterial bionanocomposites of lysozyme with amorphous silica or titania[J]. Small, 2006, 2(5):640-643.
[17] SHIOMI T, TSUNODA T, KAWAI A, et al. Biomimetic synthesis of lysozyme-silica hybrid hollow particles using sonochemical treatment:influence of pH and lysozyme concentration on morphology[J]. Chemistry of Materials, 2007, 19(18):4486-4493.
[18] BASSINDALE A R, TAYLOR P G, ABBATE V, et al. Simple and mild preparation of silica-enzyme composites from silicic acid solution[J]. Journal of Materials Chemistry, 2009, 19(41):7606-7609.
[19] ZHOU L, WANG C, JIANG Y, et al. Immobilization of papain in biosilica matrix and its catalytic property[J]. Chinese Journal of Chemical Engineering, 2013, 21(6):670-675.
[20] YANG Y, WANG G, ZHU G, et al. The effect of amorphous calcium phosphate on protein protection against thermal denaturation[J]. Chemical Communications, 2015, 51(41):8705-8707.
[21] GE J, LEI J, ZARE R N. Protein-inorganic hybrid nanoflowers[J]. Nature Nanotechnology, 2012, 7(7):428-432.
[22] CUI J, JIA S. Organic-inorganic hybrid nanoflowers:a novel host platform for immobilizing biomolecules[J]. Coordination Chemistry Reviews, 2017, 352:249-263.
[23] LIU Y, ZHANG Y, LI X, et al. Self-repairing metal-organic hybrid complexes for reinforcing immobilized chloroperoxidase reusability[J]. Chemical Communications, 2017, 53(22):3216-3219.
[24] PATEL S, OTARI S V, LI J, et al. Synthesis of cross-linked protein-metal hybrid nanoflowers and its application in repeated batch decolorization of synthetic dyes[J]. Journal of Hazardous Materials, 2018, 347:442-450.
[25] CHILKOTI A, MEYER D E. Purification of recombinant proteins by fusion with thermally-responsive polypeptides[J]. Nature Biotechnology, 1999, 17(11):1112-1115.
[26] YEBOAH A, COHEN R I, RABOLLI C, et al. Elastin-like polypeptides:a strategic fusion partner for biologics[J]. Biotechnology and Bioengineering, 2016, 113(8):1617-1627.
[27] 李存存, 张光亚. 酶定向固定化方法及应用的研究进展[J]. 化工进展, 2013, 32(10):2467-2474. LI Cuncun, ZHANG Guangya. Research progress of site-specific immobilization of enzymes and application[J]. Chemical Industry and Engineering Progress, 2013, 32(10):2467-2474.
[28] LI C, ZHANG G. The fusions of elastin-like polypeptides and xylanase self-assembled into insoluble active xylanase particles[J]. Journal of Biotechnology, 2014, 177:60-66.
[29] SHANBHAG B K, LIU B, FU J, et al. Self-assembled enzyme nanoparticles for carbon dioxide capture[J]. Nano Letters, 2016, 16(5):3379-3384.
[30] LUO Q, HOU C, BAI Y, et al. Protein assembly:versatile approaches to construct highly ordered nanostructures[J]. Chemical Reviews, 2016, 116(22):13571-13632.
[31] HAUSER C A E, MAURER-STROH S, MARTINS I C. Amyloid-based nanosensors and nanodevices[J]. Chemical Society Reviews, 2014, 43(15):5326-5345.
[32] WEI G, SU Z, REYNOLDS N P, et al. Self-assembling peptide and protein amyloids:from structure to tailored function in nanotechnology[J]. Chemical Society Reviews, 2017, 46(15):4661-4708.
[33] SAMBASHIVAN S, LIU Y, SAWAYA M R, et al. Amyloid-like fibrils of ribonuclease A with three-dimensional domain-swapped and native-like structure[J]. Nature, 2005, 437(7056):266-269.
[34] GUGLIELMI F, MONTI D M, ARCIELLO A, et al. Enzymatically active fibrils generated by the self-assembly of the ApoA-I fibrillogenic domain functionalized with a catalytic moiety[J]. Biomaterials, 2009, 30(5):829-835.
[35] ZHOU X, SHIMANOVICH U, HERLING T W, et al. Enzymatically active microgels from self-assembling protein nanofibrils for microflow chemistry[J]. ACS Nano, 2015, 9(6):5772-5781.
[36] KNOWLES T P J, OPPENHEIM T W, BUELL A K, et al. Nanostructured films from hierarchical self-assembly of amyloidogenic proteins[J]. Nature Nanotechnology, 2010, 5(3):204-207.
[37] KNOWLES T P, FITZPATRICK A W, MEEHAN S, et al. Role of intermolecular forces in defining material properties of protein nanofibrils[J]. Science, 2007, 318(5858):1900-1903.
[38] HEYMAN A, LEVY I, ALTMAN A, et al. SP1 as a novel scaffold building block for self-assembly nanofabrication of submicron enzymatic structures[J]. Nano Letters, 2007, 7(6):1575-1579.
[39] BANEYX F, MUJACIC M. Recombinant protein folding and misfolding in Escherichia coli[J]. Nature Biotechnology, 2004, 22(11):1399-1408.
[40] RINAS U, GARCIA-FRUITÓS E, CORCHERO J L, et al. Bacterial inclusion bodies:discovering their better half[J]. Trends in Biochemical Sciences, 2017, 42(9):726-737.
[41] PARK S, PARK S, CHOI S. Active inclusion body formation using Paenibacillus polymyxa PoxB as a fusion partner in Escherichia coli[J]. Analytical Biochemistry, 2012, 426(1):63-65.
[42] KRAUSS U, JAGER V D, DIENER M, et al. Catalytically-active inclusion bodies-carrier-free protein immobilizates for application in biotechnology and biomedicine[J]. Journal of Biotechnology, 2017, 258:136-147.
[43] WU W, XING L, ZHOU B, et al. Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli[J]. Microbial Cell Factories, 2011, 10(1):9.
[44] KROGER N, DEUTZMANN R, SUMPER M. Polycationic peptides from diatom biosilica that direct silica nanosphere formation[J]. Science, 1999, 286(5442):1129-1132.
[45] POULSEN N, BERNE C, SPAIN J, et al. Silica immobilization of an enzyme through genetic engineering of the diatom Thalassiosira pseudonana[J]. Angewandte Chemie International Edition, 2007, 46(11):1843-1846.
[46] JO B H, SEO J H, YANG Y J, et al. Bioinspired silica nanocomposite with autoencapsulated carbonic anhydrase as a robust biocatalyst for CO2 sequestration[J]. ACS Catalysis, 2014, 4(12):4332-4340.
[47] KROGER N, LORENZ S, BRUNNER E, et al. Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis[J]. Science, 2002, 298(5593):584-586.
[48] KROGER N, DEUTZMANN R, SUMPER M. Polycationic peptides from diatom biosilica that direct silica nanosphere formation[J]. Science, 1999, 286(5442):1129-1132.
[49] JIANG Y, SUN Q, JIANG Z, et al. The improved stability of enzyme encapsulated in biomimetic titania particles[J]. Materials Science and Engineering C, 2009, 29(1):328-334.
[50] REN H, ZHANG Y, SU J, et al. Encapsulation of amine dehydrogenase in hybrid titania nanoparticles by polyethylenimine coating and templated biomineralization[J]. Journal of Biotechnology, 2017, 241:33-41.
[51] CARE A, BERGQUIST P L, SUNNA A. Solid-binding peptides:smart tools for nanobiotechnology[J]. Trends in Biotechnology, 2015, 33(5):259-268.
[52] KACAR T, ZIN M T, SO C, et al. Directed self-immobilization of alkaline phosphatase on micro-patterned substrates via genetically fused metal-binding peptide[J]. Biotechnology and Bioengineering, 2009, 103(4):696-705.
[53] YANG M, CHOI B G, PARK T J, et al. Site-specific immobilization of gold binding polypeptide on gold nanoparticle-coated graphene sheet for biosensor application[J]. Nanoscale, 2011, 3(7):2950-2956.
[54] CARE A, NEVALAINEN H, BERGQUIST P L, et al. Effect of Trichoderma reesei proteinases on the affinity of an inorganic-binding peptide[J]. Applied Biochemistry and Biotechnology, 2014, 173(8):2225-2240.
[55] COYLE B L, BANEYX F. A cleavable silica-binding affinity tag for rapid and inexpensive protein purification[J]. Biotechnology and Bioengineering, 2014, 111(10):2019-2026.
[56] COYLE B L, BANEYX F. Direct and reversible immobilization and microcontact printing of functional proteins on glass using a genetically appended silica-binding tag[J]. Chemical Communications, 2016, 52(43):7001-7004.
[57] CHEN X, WANG Y, WANG P. Peptide-induced affinity binding of carbonic anhydrase to carbon nanotubes[J]. Langmuir, 2015, 31(1):397-403.
[58] CARE A, PETROLL K, GIBSON E S Y, et al. Solid-binding peptides for immobilisation of thermostable enzymes to hydrolyse biomass polysaccharides[J]. Biotechnology for Biofuels, 2017, 10(1):29.
[59] OLIVEIRA C, CARVALHO V, DOMINGUES L, et al. Recombinant CBM-fusion technology:applications overview[J]. Biotechnology Advances, 2015, 33(3/4):358-369.
[60] WANG S, CUI G, SONG X, et al. Efficiency and stability enhancement of cis-epoxysuccinic acid hydrolase by fusion with a carbohydrate binding module and immobilization onto cellulose[J]. Applied Biochemistry and Biotechnology, 2012, 168(3):708-717.
[61] KUMAR A, ZHANG S, WU G, et al. Cellulose binding domain assisted immobilization of lipase (GSlip-CBD) onto cellulosic nanogel:characterization and application in organic medium[J]. Colloids and Surfaces B:Biointerfaces, 2015, 136:1042-1050.
[62] LINDER M B. Hydrophobins:proteins that selfassemble at interfaces[J]. Current Opinion in Colloid & Interface Science, 2009, 14(5):356-363.
[63] PISCITELLI A, PENNACCHIO A, LONGOBARDI S, et al. Vmh2 hydrophobin as a tool for the development of "self-immobilizing" enzymes for biosensing[J]. Biotechnology and Bioengineering, 2017, 114(1):46-52.
[64] REHM B H A. Bacterial polymers:biosynthesis, modifications and applications[J]. Nature Reviews Microbiology, 2010, 8(8):578-592.
[65] BLATCHFORD P A, SCOTT C, FRENCH N, et al. Immobilization of organophosphohydrolase OpdA from Agrobacterium radiobacter by overproduction at the surface of polyester inclusions inside engineered Escherichia coli[J]. Biotechnology and Bioengineering, 2012, 109(5):1101-1108.
[66] RAN G, TAN D, DAI W, et al. Immobilization of alkaline polygalacturonate lyase from Bacillus subtilis on the surface of bacterial polyhydroxyalkanoate nano-granules[J]. Applied Microbiology and Biotechnology, 2017, 101(8):3247-3258.
[67] HAY I D, DU J, REYES P R, et al. In vivo polyester immobilized sortase for tagless protein purification[J]. Microbial Cell Factories, 2015, 14(1):190.
[68] MULLANEY J A, REHM B H A. Design of a single-chain multi-enzyme fusion protein establishing the polyhydroxybutyrate biosynthesis pathway[J]. Journal of Biotechnology, 2010, 147(1):31-36. |