化工进展 ›› 2019, Vol. 38 ›› Issue (03): 1353-1361.DOI: 10.16085/j.issn.1000-6613.2018-0428
收稿日期:
2018-03-02
修回日期:
2018-05-17
出版日期:
2019-03-05
发布日期:
2019-03-05
通讯作者:
张群峰,李小年
作者简介:
基金资助:
Hao XU(),Yiqi XU,Yishu JIANG,Qunfeng ZHANG(
),Xiaonian LI(
)
Received:
2018-03-02
Revised:
2018-05-17
Online:
2019-03-05
Published:
2019-03-05
Contact:
Qunfeng ZHANG,Xiaonian LI
摘要:
催化选择加氢去除乙烯中微量乙炔是石化工业重要的反应过程,工业钯基催化剂选择性低、催化剂使用寿命较短。本文综述了近年来国内外乙炔选择性加氢钯基催化剂的研究进展。主要探讨了过渡金属、金属氧化物与非金属配体助剂能调变钯粒子空间结构,隔离分散钯粒子并与钯粒子产生电子效应;阐明了钯粒子尺寸与织构形貌的调控能改变钯的晶面结构,影响钯对乙烯的吸脱附和对氢气的活化与解离性能;评述了单一氧化物、复合金属氧化物、碳材料等载体为催化剂提供合适的表面酸碱性并加强了与活性中心之间的相互作用,稳定钯粒子抑制其发生迁移与团聚。提高乙烯选择性与催化剂稳定性是该研究的重点与难点,负载型钯基催化剂的发展方向是构建高分散钯粒子,并在反应过程中保持稳定。
中图分类号:
徐浩,徐逸琦,蒋亦舒,张群峰,李小年. 钯基乙炔选择性加氢催化剂研究进展[J]. 化工进展, 2019, 38(03): 1353-1361.
Hao XU,Yiqi XU,Yishu JIANG,Qunfeng ZHANG,Xiaonian LI. Research progress in palladium-based catalysts for selective hydrogenation of acetylene[J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1353-1361.
1 | 骆红静, 吕晓东, 赵睿, 等 . 2016年世界和中国石化工业综述及展望[J]. 国际石油经济, 2017(5): 51-60. |
LUO H J , LÜ X D , ZHAO R , et al . 2016 review and 2017 outlook of global and China petrochemical industry[J]. International Petroleum Economics, 2017(5): 51-60. | |
2 | CHAI M , LIU X , LI L , et al . SiO2-supported Au-Ni bimetallic catalyst for the selective hydrogenation of acetylene[J]. Chinese Journal of Catalysis, 2017, 38(8): 1338-1346. |
3 | 李振宇, 王红秋, 黄格省, 等 . 我国乙烯生产工艺现状与发展趋势分析[J]. 化工进展, 2017, 36(3): 767-773. |
LI Z Y , WANG H Q , HUANG G S , et al . Research progress of ZSM-5 zeolite for hydrocarbon fuel catalytic cracking against carbon deposition[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 767-773. | |
4 | ARMBRÜSTER M , KOVNIR K , BEHRENS M , et al . Pd-Ga intermetallic compounds as highly selective semihydrogenation catalysts[J]. Journal of the American Chemical Society, 2010, 132(42): 14745-14747. |
5 | 李菲菲, 孙逊, 孙立波, 等 . 负载型纳米金催化剂在乙炔选择性加氢反应中的研究进展[J]. 工业催化, 2016, 24(10): 21-27. |
LI F F , SUN X , SUN L B , et al . Progress in supported nanogold catalyst for selective hydrogenation of acetylene[J]. Industrial Catalysis, 2016, 24(10): 21-27. | |
6 | YANG B , BURCH R , HARDACRE C , et al . Influence of surface structures, subsurface carbon and hydrogen, and surface alloying on the activity and selectivity of acetylene hydrogenation on Pd surfaces: a density functional theory study[J]. Journal of Catalysis, 2013, 305:264-276. |
7 | 苑兴洲, 陈绍云, 陈恒, 等 . 甲烷在Cr改性Pd/Al2O3催化剂上的催化燃烧性能[J]. 化工进展, 2014, 33(12): 3258-3262. |
YUAN X Z , CHEN S Y , CHEN H , et al . Cr modified Pd/Al2O3 catalyst for methane combustion[J]. Chemical Industry and Engineering Progress, 2014, 33(12): 3258-3262. | |
8 | KRAJČÍ M , HAFNER J . The (210) surface of intermetallic B20 compound GaPd as a selective hydrogenation catalyst: a DFT study[J]. Journal of Catalysis, 2012, 295:70-80. |
9 | ARMBRÜSTER M , BEHRENS M , CINQUINI F , et al . How to control the selectivity of palladium-based catalysts in hydrogenation reactions: the role of subsurface chemistry[J]. Chemcatchem, 2012, 4(8): 1048-1063. |
10 | PEI G X , LIU X Y , ZHANG T , et al . Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene[J]. ACS Catalysis, 2015, 5(6): 3717-3725. |
11 | 车春霞, 沈立军, 谭都平, 等 . 乙炔选择性加氢反应催化机理的分子模拟研究[J]. 工业催化, 2012, 20(1): 49-53. |
CHE C X , SHEN L J , TAN D P , et al . Molecular simulation research on the catalytic mechanism of selective hydrogenation of acetylene[J]. Industrial Catalysis, 2012, 20(1): 49-53. | |
12 | ZHOU H R , YANG X F , ZHANG T , et al . PdZn intermetallic nanostructure with Pd-Zn-Pd ensembles for highly active and chemoselective semi-hydrogenation of acetylene[J]. ACS Catalysis, 2016, 6(2): 1054-1061. |
13 | LIU Y N , HE Y F , FENG J T , et al . Catalytic performance of Pd-promoted Cu hydrotalcite-derived catalysts in partial hydrogenation of acetylene:effect of Pd-Cu alloy formation[J]. Catalysis Science&Technology, 2016, 6(9): 3027-3037. |
14 | FENG J T , LIU Y N , YIN M , et al . Preparation and structure-property relationships of supported trimetallic PdAuAg catalysts for the selective hydrogenation of acetylene[J]. Journal of Catalysis, 2016, 344:854-864. |
15 | FU Q , LI W X , YAO Y X , et al . Interface-confined ferrous centers for catalytic oxidation[J]. Science, 2010, 328(5982): 1141-1144. |
16 | LU J L , FU B S , KUNG M C , et al . Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition[J]. Science, 2012, 335(6073): 1205-1208. |
17 | YI H , DU H Y , HU Y L , et al . Precisely controlled porous alumina overcoating on Pd catalyst by atomic layer deposition: enhanced selectivity and durability in hydrogenation of 1,3-butadiene[J]. ACS Catalysis, 2015, 5(5): 2735-2739. |
18 | DING L B , YI H , HAUNG W H , et al . Activating edge sites on Pd catalysts for selective hydrogenation of acetylene via selective Ga2O3 decoration[J]. ACS Catalysis, 2016, 6(6): 3700-3707. |
19 | AHN I Y, KIM W J, MOON S H . Performance of La2O3- or Nb2O5-added Pd/SiO2 catalysts in acetylene hydrogenation[J]. Applied Catalysis A:General, 2006, 308:75-81. |
20 | KIM W J, MOON S H . Modified Pd catalysts for the selective hydrogenation of acetylene[J]. Catalisis Today, 2012, 185(1): 2-16. |
21 | KIM E, SHIN E W , BARK C W , et al . Pd catalyst promoted by two metal oxides with different reducibilities: properties and performance in the selective hydrogenation of acetylene[J]. Applied Catalysis A:General, 2014, 471:80-83. |
22 | TRIMM D L , LIU I O Y , CANT N W . The effect of carbon monoxide on the oligomerization of acetylene in hydrogen over a Ni/SiO2 catalyst[J]. Journal of Molecular Catalysis A:Chemical, 2009, 307(1/2): 13-20. |
23 | MCKENNA F M , WELLS R P K , ANDERSON J A . Enhanced selectivity in acetylene hydrogenation by ligand modified Pd/TiO2 catalysts[J]. Chemical Communications, 2011, 47(8): 2351-2353. |
24 | MCCUE A J , MCKENNA F M , ANDERSON J A . Triphenylphosphine:a ligand for heterogeneous catalysis too?Selectivity enhancement in acetylene hydrogenation over modified Pd/TiO2 catalyst[J]. Catalysis Science&Technology, 2015, 5(4): 2449-2459. |
25 | MCKENNA F M , ANDERSON J A . Selectivity enhancement in acetylene hydrogenation over diphenyl sulphide-modified Pd/TiO2 catalysts[J]. Journal of Catalysis, 2011, 281(2): 231-240. |
26 | HU M , WANG X Q . Effect of N3 - species on selective acetylene hydrogenation over Pd/SAC catalysts[J]. Catalysis Today, 2016, 263:98-104. |
27 | PEI G X , LIU X Y , ZHANG T , et al . Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the selective hydrogenation of acetylene in excess ethylene[J]. New Journal of Chemistry, 2014, 38(5): 2043-2051. |
28 | ZHOU H R , YANG X F , ZHANG T , et al . Pd/ZnO catalysts with different origins for high chemoselectivity in acetylene semi-hydrogenation[J]. Chinese Journal of Catalysis, 2016, 37(5): 692-699. |
29 | KRAJČÍ M , HAFNER J . Selective semi-hydrogenation of acetylene:atomistic scenario for reactions on the polar threefold surfaces of GaPd[J]. Journal of Catalysis, 2014, 312:232-248. |
30 | VILE G , ALBANI D , NACHTEGAAL M , et al . A stable single-site palladium catalyst for hydrogenations[J]. Angewandte Chemie-International Edition, 2015, 54(38): 11265-11269. |
31 | KIM S K, KIM C, MOON S H , et al . Performance of shape-controlled Pd nanoparticles in the selective hydrogenation of acetylene[J]. Journal of Catalysis, 2013, 306:146-154. |
32 | HE Y F , LIU Y N , LI D Q , et al . Fabrication of a PdAg mesocrystal catalyst for the partial hydrogenation of acetylene[J]. Journal of Catalysis, 2015, 330:61-70. |
33 | ELLIS I T , WOLF E H , JONES G , et al . Lithium and boron as interstitial palladium dopants for catalytic partial hydrogenation of acetylene[J]. Chemical Communications, 2017, 53(3): 601-604. |
34 | LUO Y , VILLASECA S A , ARMBRÜSTER M , et al . Addressing electronic effects in the semi-hydrogenation of ethyne by InPd2 and intermetallic Ga-Pd compounds[J]. Journal of Catalysis, 2016, 338:265-272. |
35 | MCCUE A J , GUERRERO-RUIZ A , RODRÍGUEZ-RAMOS I , et al . Palladium sulphide—A highly selective catalyst for the gas phase hydrogenation of alkynes to alkenes[J]. Journal of Catalysis, 2016, 340:10-16. |
36 | MCCUE A J , GUERRERO-RUIZ A , RAMIREZ-BARRIA C , et al . Selective hydrogenation of mixed alkyne/alkene streams at elevated pressure over a palladium sulfide catalyst[J]. Journal of Catalysis, 2017, 355:40-52. |
37 | SANGKHUM T , MEKASUWANDUMRONG O , PANPRANOT J , et al . Effect of Fe-modified α-Al2O3 on the properties of Pd/α-Al2O3 catalysts in selective acetylene hydrogenation[J]. Reaction Kinetics and Catalysis Letters, 2009, 97(1): 115-123. |
38 | 徐爽, 台宝泉, 李晓燕, 等 . 二硫化物修饰改性乙炔加氢催化剂研究[J]. 石油化工高等学校学报, 2014, 27(4): 1-5. |
XU S , TAI B Q , LI X Y , et al . Study on acetylene hydrogenation catalysts modified by disulfide[J]. Journal of Petrochemical Universities, 2014, 27(4): 1-5. | |
39 | KOMEILI S , RAVANCHI M T , TAEB A . The influence of alumina phases on the performance of the Pd-Ag/Al2O3 catalyst in tail-end selective hydrogenation of acetylene[J]. Applied Catalysis A:General,2015, 502:287-296. |
40 | RAVANCHI M T , FADAEERAYENI S , FARD M R . The effect of calcination temperature on physicochemical properties of alumina as a support for acetylene selective hydrogenation catalyst[J]. Research on Chemical Inter2018-0428tes, 2015, 42(5): 4797-4811. |
41 | 李冰杰, 史秀锋, 刘秀芳, 等 . ZnAl水滑石负载钯催化剂的制备及催化性能[J]. 化工进展, 2014, 33(10): 2661-2664. |
LI B J , SHI X F , LIU X F , et al . Preparation of hydrotalcite-supported palladium catalysts and their catalytic performances[J]. Chemical Industry and Engineering Progress, 2014, 33(10): 2661-2664. | |
42 | FENG J T , MA X Y, LI D Q , et al . Enhancement of metal dispersion and selective acetylene hydrogenation catalytic properties of a supported Pd catalyst[J]. Industrial & Engineering Chemistry Research, 2011, 50(4): 1947-1954. |
43 | MA X Y, CHAI Y Y , EVANS D , et al . Preparation and selective acetylene hydrogenation catalytic properties of supported Pd catalyst by the in situ precipitation-reduction method[J]. The Journal of Physical Chemistry C, 2011, 115(17): 8693-8701. |
44 | JIN Q , HE Y F , FENG J T , et al . Highly selective and stable PdNi catalyst derived from layered double hydroxides for partial hydrogenation of acetylene[J]. Applied Catalysis A:General, 2015, 500:3-11. |
45 | OOSTHUIZEN R S , NYAMORI V O . Carbon nanotubes as supports for palladium and bimetallic catalysts for use in hydrogenation reactions[J]. Platinum Metals Review, 2011, 55(3): 154-169. |
46 | BENAVIDEZ A D , BURTON P D , DATYE A K , et al . Improved selectivity of carbon-supported palladium catalysts for the hydrogenation of acetylene in excess ethylene[J]. Applied Catalysis A:General, 2014, 482(26): 108-115. |
47 | LU H M , XU B L , FAN Y N , et al . The influence of Pd particles distribution position on Pd/CNTs catalyst for acetylene selective hydrogenation[J]. Catalysis Letters, 2014, 144(12): 2198-2203. |
48 | CHESNOKOV V V , PODYACHEVA O Y , RICHARDS R M . Influence of carbon nanomaterials on the properties of Pd/C catalysts in selective hydrogenation of acetylene[J]. Materials Research Bulletin, 2017, 88:78-84. |
49 | HUANG X H , XIA Y J , LU J L , et al . Enhancing both selectivity and coking-resistance of a single-atom Pd1/C3N4 catalyst for acetylene hydrogenation[J]. Nano Research, 2017, 10(4): 1302-1312. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 李化全, 王明华, 邱贵宝. 硫酸酸解钙钛矿相精矿的行为[J]. 化工进展, 2023, 42(S1): 536-541. |
[7] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[10] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[11] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[12] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[13] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[14] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[15] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 565
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 653
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |