化工进展 ›› 2017, Vol. 36 ›› Issue (02): 397-409.DOI: 10.16085/j.issn.1000-6613.2017.02.001
王开放, 刘光, 高旭升, 贺冬莹, 李晋平
收稿日期:
2016-05-10
修回日期:
2016-06-13
出版日期:
2017-02-05
发布日期:
2017-02-05
通讯作者:
李晋平。E-mail:jpli211@hotmail.com。
作者简介:
王开放(1990-),男,硕士研究生,研究方向为光电催化。
基金资助:
WANG Kaifang, LIU Guang, GAO Xusheng, HE dongying, LI Jinping
Received:
2016-05-10
Revised:
2016-06-13
Online:
2017-02-05
Published:
2017-02-05
摘要: 光电化学池可以将太阳能以氢气的形式储存起来,其中稳定、廉价的催化剂是关键。α-Fe2O3具有合适的禁带宽度,较高的理论光-电转化效率,光稳定性好,在地壳中的储量丰富,被认为是最具有发展前景的光电催化材料之一;但是它的导电性差、光生电荷寿命短、氧化反应过电位高,严重阻碍了其发展。本文首先介绍了光电催化理论,然后重点综述了近些年α-Fe2O3纳米结构的制备技术,以及针对其不足所采用的改性方法,包括通过元素掺杂来增强α-Fe2O3的导电性,表面处理来降低氧化反应过电势或陷阱浓度,与其他材料复合来增加光生电压或催化剂表面积,最后对α-Fe2O3作为光阳极催化剂分解水制氢未来的发展前景作出展望,指出多种手段的有效结合是提高其光电流密度的重要途径。
中图分类号:
王开放, 刘光, 高旭升, 贺冬莹, 李晋平. α-Fe2O3光电催化分解水制备氢气研究进展[J]. 化工进展, 2017, 36(02): 397-409.
WANG Kaifang, LIU Guang, GAO Xusheng, HE dongying, LI Jinping. Hematite photoanodes for solar water splitting[J]. Chemical Industry and Engineering Progree, 2017, 36(02): 397-409.
[1] PRVOT M S,SIVULA K. Photoelectrochemical tandem cells for solar water splitting[J]. J. Phys. Chem. C,2013,117(35):17879-17893. [2] IORDANOVA N,DUPUIS M,ROSSO K M. Charge transport in metal oxides:a theoretical study of hematite α-Fe2O3[J]. The Journal of Chemical Physics,2005,122(14):144305. [3] HARDEE K L,BARD A J. Semiconductor electrodes:Ⅴ. The application of chemically vapor deposited iron oxide films to photosensitized electrolysis[J]. J. Electrochem. Soc.,1976,123(7):1024-1026. [4] CARVALHO V,LUZ R A D S,LIMA B H,et al. Highly oriented hematite nanorods arrays for photoelectrochemical water splitting[J]. J. Power Sources,2012,205:525-529. [5] YEH L S R,HACKERMAN N. Iron oxide semiconductor electrodes in photoassisted electrolysis of water[J]. J. Electrochem. Soc.,1977,124(6):833-836. [6] FORMAL F L,T TREAULT N,CORNUZ M,et al. Passivating surface states on water splitting hematite photoanodes with alumina overlayers[J]. Chem. Sci.,2011,2(4):737-743. [7] IANDOLO B,WICKMAN B,ZORIĆ I,et al. The rise of hematite:origin and strategies to reduce the high onset potential for the oxygen evolution reaction[J]. J. Mater. Chem. A,2015,3(33):16896-16912. [8] MA Y,JOHNSON P D,WASSDAHL N,et al. Electronic structures of α-Fe2O3 and Fe3O4 from ok-edge absorption and emission spectroscopy[J]. Phys. Rev. B,1993,48(4):2109-2111. [9] BOSMAN A J,VAN DAAL H J. Small-polaron versus band conduction in some transition-metal oxides[J]. Adv. Phys.,2006,19(77):11-17. [10] KUDO A,MISEKI Y. Heterogeneous photocatalyst materials for water splitting[J]. Chem. Soc. Rev.,2009,38(1):253-278. [11] BEERMANN N,VAYSSIERES L,LINDQUIST S-E,et al. Photoelectrochemical studies of oriented nanorod thin films of hematite[J]. J. Electrochem. Soc.,2000,147(7):2456-2461. [12] PHUAN Y W,CHONG M N,ZHU T,et al. Effects of annealing temperature on the physicochemical,optical and photoelectrochemical properties of nanostructured hematite thin films prepared via electrodeposition method[J]. Mater. Res. Bull.,2015,69:71-77. [13] AHMED M G,KRETSCHMER I E,KANDIEL T A,et al. A facile surface passivation of hematite photoanodes with TiO2 overlayers for efficient solar water splitting[J]. ACS Appl. Mater. Interfaces,2015,7(43):24053-24062. [14] CARVALHO-JR W M,SOUZA F L. Thermal enhancement of water affinity on the surface of undoped hematite photoelectrodes[J]. Sol. Energ. Mat. Sol. C.,2016,144:395-404. [15] KAY A,CESAR I,GR TZEL M. New benchmark for water photooxidation by nanostructured α-Fe2O3 films[J]. J. Am. Chem. Soc.,2006,128(49):15714-15721. [16] WARREN S C,VO TCHOVSKY K,DOTAN H,et al. Identifying champion nanostructures for solar water-splitting[J]. Nat. Mater.,2013,12(9):842-849. [17] KLAHR B M,MARTINSON A B,HAMANN T W. Photoelectrochemical investigation of ultrathin film iron oxide solar cells prepared by atomic layer deposition[J]. Langmuir,2011,27(1):461-468. [18] LIN Y,ZHOU S,SHEEHAN S W,et al. Nanonet-based hematite heteronanostructures for efficient solar water splitting[J]. J. Am. Chem. Soc.,2011,133(8):2398-401. [19] WANG T,LUO Z,LI C,et al. Controllable fabrication of nanostructured materials for photoelectrochemical water splitting via atomic layer deposition[J]. Chem. Soc. Rev.,2014,43(22):7469-7484. [20] SARTORETTI C J,ALEXANDER B D,SOLARSKA R,et al. Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes[J]. Physical Chemistry B,2005,109(28):13685-13692. [21] SCHREBLER R,LLEWELYN C,VERA F,et al. An electrochemical deposition route for obtaining α-Fe2O3 thin films[J]. Electrochemical and Solid-State Letters,2007,10(10):D95. [22] SPRAY R L,CHOI K S. Photoactivity of transparent nanocrystalline Fe2O3 electrodes prepared via anodic electrodeposition[J]. Chem. Mater.,2009,21(15):3701-3709. [23] SHINDE P S,GO G H,LEE W J. Facile growth of hierarchical hematite (α-Fe2O3) nanopetals on FTO by pulse reverse electrodeposition for photoelectrochemical water splitting[J]. J. Mater. Chem.,2012,22(21):10469. [24] MAO A,SHIN K,KIM J K,et al. Controlled synthesis of vertically aligned hematite on conducting substrate for photoelectrochemical cells:nanorods versus nanotubes[J]. ACS Applied Materials & Interfaces,2011,3(6):1852-1858. [25] PRAKASAM H E,VARGHESE O,PAULOSE M,et al. Synthesis and photoelectrochemical properties of nanoporous iron (Ⅲ) oxide by potentiostatic anodization[J]. Nanotechnology,2006,17(17):4285. [26] FAN Z,WEN X,YANG S,et al. Controlled p- and n-type doping of Fe2O3 nanobelt field effect transistors[J]. Appl. Phys. Lett.,2005,87(1):13113. [27] SIVULA K,ZBORIL R,FORMAL F L,et al. Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach[J]. J. Am. Chem. Soc.,2010,132(21):7436-7444. [28] JIA C J,SUN L D,YAN Z G,et al. Single-crystalline iron oxide nanotubes[J]. Angewandte Chemie,2005,117(28):4402-4407. [29] WU Z,YU K,ZHANG S,et al. Hematite hollow spheres with a mesoporous shell:controlled synthesis and applications in gas sensor and lithium ion batteries[J]. J. Phys. Chem. C,2008,112(30):11307-11313. [30] ZENG S,TANG K,LI T,et al. Facile route for the fabrication of porous hematite nanoflowers:its synthesis,growth mechanism,application in the lithium ion battery,and magnetic and photocatalytic properties[J]. J. Phys. Chem. C,2008,112(13):4836-4843. [31] PENDLEBURY S R,BARROSO M,COWAN A J,et al. Dynamics of photogenerated holes in nanocrystalline α-Fe2O3 electrodes for water oxidation probed by transient absorption spectroscopy[J]. Chem. Commun.,2011,47(2):716-718. [32] SEGEV G,DOTAN H,MALVIYA K D,et al. High solar flux concentration water splitting with hematite (α-Fe2O3) photoanodes[J]. Advanced Energy Materials,2016,6(1):DOI:10.1002/aenm. 201500817. [33] LIN Y,XU Y,MAYER M T,et al. Growth of p-type hematite by atomic layer deposition and its utilization for improved solar water splitting[J]. J. Am. Chem. Soc.,2012,134(12):5508-5511. [34] GLASSCOCK J A,BARNES P R F,PLUMB I C,et al. Structural,optical and electrical properties of undoped polycrystalline hematite thin films produced using filtered arc deposition[J]. Thin Solid Films,2008,516(8):1716-1724. [35] CESAR I,SIVULA K,KAY A,et al. Influence of feature size,film thickness,and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting[J]. J. Phys. Chem. C,2009,113(2):772-782. [36] KUMARA P,SHARMAA P,SHRIVASTAV R,et al. Electrodeposited zirconium-doped α-Fe2O3 thin film for photoelectrochemical water splitting[J]. Int. J. Hydrogen. Energ.,2011,36(4):2777-2784. [37] SHEN S,KRONAWITTER C X,WHEELER D A,et al. Physical and photoelectrochemical characterization of Ti-doped hematite photoanodes prepared by solution growth[J]. J. Mater. Chem. A,2013,1(46):14498-14506. [38] GURUDAYA L,CHIAM S Y,KUMAR M H,et al. Improving the efficiency of hematite nanorods for photoelectrochemical water splitting by doping with manganese[J]. ACS Appl. Mater. Interfaces,2014,6(8):5852-5859. [39] LIU J,CAI Y Y,TIAN Z F,et al. Highly oriented Ge-doped hematite nanosheet arrays for photoelectrochemical water oxidation[J]. Nano Energy,2014,9:282-290. [40] HAHN N T,YE H,FLAHERTY D W,et al. Reactive ballistic deposition of α-Fe2O3 thin films for photoelectrochemical water oxidation[J]. ACS Nano,2010,4(4):1977-1986. [41] REICHMAN J. The current-voltage characteristics of semiconductor-electrolyte junction photovoltaic cells[J]. Appl. Phys. Lett.,1980,36(7):574-577. [42] KLAHR B,GIMENEZ S,FABREGAT-SANTIAGO F,et al. Water oxidation at hematite photoelectrodes:the role of surface states[J]. J. Am. Chem. Soc.,2012,134(9):4294-302. [43] GURLO A,BÂRSAN N,OPREA A,et al. An n- to p-type conductivity transition induced by oxygen adsorption on alpha-Fe2O3[J]. Applied Physics Letters,2004,85(12):DOI:org/10.1063/1.1794853. [44] LING Y,WANG G,WHEELER D A,et al. Sn-doped hematite nanostructures for photoelectrochemical water splitting[J]. Nano Letters,2011,11(5):2119-2125. [45] WANG L,LEE C Y,MAZARE A,et al. Enhancing the water splitting efficiency of Sn-doped hematite nanoflakes by flame annealing[J]. Chemistry-A:European Journal,2013,20(1):72-82. [46] WANG J J,HU Y,TOTH R,et al. A facile nonpolar organic solution process of a nanostructured hematite photoanode with high efficiency and stability for water splitting[J]. J. Mater. Chem. A,2016, [47] KLEIMAN-SHWARSCTEIN A,HU Y-S,FORMAN A J,et al. Electrodeposition of α-Fe2O3 doped with Mo Cr as photoanodes for photocatalytic water splitting[J]. The Journal of Physical Chemistry C,2008,112(40):15900-15907. [48] BAKA A,CHOIB W,PARK H. Enhancing the photoelectrochemical performance of hematite (α-Fe2O3) electrodes by cadmium incorporation[J]. Applied Catalysis B:Environmental,2011,110:207-215. [49] LIU Y,YU Y X,ZHANG W D. Photoelectrochemical properties of Ni-doped Fe2O3 thin films prepared by electrodeposition[J]. Electrochim. Acta,2012,59:121-127. [50] ZHANG P,KLEIMAN-SHWARSCTEIN A,HU Y S,et al. Oriented Ti doped hematite thin film as active photoanodes synthesized by facile APCVD[J]. Energy Environ. Sci.,2011,4(3):1020. [51] FRANKING R,LI L,LUKOWSKI M A,et al. Facile post-growth doping of nanostructured hematite photoanodes for enhanced photoelectrochemical water oxidation[J]. Energy Environ. Sci.,2013,6(2):500-512. [52] MAO A,PARK N G,HAN G Y,et al. Controlled growth of vertically oriented hematite/Pt composite nanorod arrays:use for photoelectrochemical water splitting[J]. Nanotechnology,2011,22(17):175703. [53] 洪孝挺,王正鹏,陆峰,等. 可见光响应型非金属掺杂TiO2的研究进展[J]. 化工进展,2004,23(10):1077-108. HONG X T,WANG Z P,LU F,et al. Study on visble light-activated non-metal doped titanium dioxide[J]. Chemical Industry and Engineering Progress,2004,23(10):1077-1080. [54] 谢先法,吴平霄,党志,等. 过渡金属离子掺杂改性TiO2研究进展[J]. 化工进展,2005,24(12):1358-1362. XIE X F,WU P X,DANG Z,et al. Research progress of photocatalytic performance of TiO2 modified by doped transition metal ions[J]. Chemical Industry and Engineering Progress,2005,24(12):1358-1362. [55] KLEIMAN-SHWARSCTEIN A,HUDA M N,WALSH A,et al. Electrodeposited aluminum-doped α-Fe2O3 photoelectrodes:Experiment and theory[J]. Chem. Mater.,2010,22(2):510-517. [56] LIAO P,KEITH J A,CARTER E A. Water oxidation on pure and doped hematite(0001)surfaces:prediction of Co and Ni as effective dopants for electrocatalysis[J]. J. Am. Chem. Soc.,2012,134(32):13296-309. [57] PETER L M. Energetics and kinetics of light-driven oxygen evolution at semiconductor electrodes:the example of hematite[J]. J. Solid State Electr.,2012,17(2):315-326. [58] ZHONG D K,GAMELIN D R. Photoelectrochemical water oxidation by cobalt catalyst ("Co-Pi")/α-Fe2O3 composite photoanodes:oxygen evolution and resolution of a kinetic bottleneck[J]. J. Am. Chem. Soc.,2010,132(12):4202-4207. [59] KLAHR B,GIMENEZ S,FABREGAT-SANTIAGO F,et al. Photoelectrochemical and impedance spectroscopic investigation of water oxidation with "Co-Pi"-coated hematite electrodes[J]. J. Am. Chem. Soc.,2012,134(40):16693-16700. [60] TILLEY S D,CORNUZ M,SIVULA K,et al. Light-induced water splitting with hematite:improved nanostructure and iridium oxide catalysis[J]. Angew. Chem. Int. Edit.,2010,49(36):6405-6408. [61] BADIA-BOU L,MAS-MARZA E,RODENAS P,et al. Water oxidation at hematite photoelectrodes with an iridium-based catalyst[J]. J. Phys. Chem. C,2013,117(8):3826-3833. [62] DU C,YANG X,MAYER M T,et al. Hematite-based water splitting with low turn-on voltages[J]. Angew. Chem. Int. Edit.,2013,52(48):12692-12695. [63] XU D,RUI Y,LI Y,et al. Zn-Co layered double hydroxide modified hematite photoanode for enhanced photoelectrochemical water splitting[J]. Appl. Surf. Sci.,2015,358:436-442. [64] RIHA S C,KLAHR B M,TYO E C,et al. Atomic layer deposition of a submonolayer catalyst for the enhanced photoelectrochemical performance of water oxidation with hematite[J]. ACS Nano,2013,7(3):2396-2405. [65] XI L,TRAN P D,CHIAM S Y,et al. Co3O4-decorated hematite nanorods as an effective photoanode for solar water oxidation[J]. J. Phys. Chem. C,2012,116(26):13884-13889. [66] WENDER H,GON ALVES R V,DIAS C S B,et al. Photocatalytic hydrogen production of Co(OH)2 nanoparticle-coated α-Fe2O3 nanorings[J]. Nanoscale,2013,5(19):9310-9316. [67] YANG T Y,KANG H Y,JIN K,et al. Iron oxide photoanode with hierarchical nanostructure for efficient water oxidation[J]. J. Mater. Chem. A,2013,2(7):2297-2305. [68] YU Q,MENG X,WANG T,et al. Hematite films decorated with nanostructured ferric oxyhydroxide as photoanodes for efficient and stable photoelectrochemical water splitting[J]. Adv. Funct. Mater.,2015,25(18):2686-2692. [69] CAO D,LUO W,FENG J,et al. Cathodic shift of onset potential for water oxidation on a Ti4+ doped Fe2O3 photoanode by suppressing the back reaction[J]. Energy Environ. Sci.,2014,7(2):752-759. [70] HISATOMI T,FORMAL F L,CORNUZ M,et al. Cathodic shift in onset potential of solar oxygen evolution on hematite by 13-group oxide overlayers[J]. Energy Environ. Sci.,2011,4(7):2512. [71] DIAB M,MOKARI T. Thermal decomposition approach for the formation of alpha-Fe2O3 mesoporous photoanodes and an α-Fe2O3/CoO hybrid structure for enhanced water oxidation[J]. Inorg. Chem.,2014,53(4):2304-2309. [72] LUO Z B,LI C C,ZHANG D,et al. Highly-oriented Fe2O3/ZnFe2O4 nanocolumnar heterojunction with improved charge separation for photoelectrochemical water oxidation[J]. Chem. Commun.,2016,52(58):9013-9015. [73] LI C C,WANG T,LUO Z B,et al. Enhanced charge separation through ALD-modified Fe2O3/Fe2TiO5 nanorod heterojunction for photoelectrochemical water oxidation[J]. Small,2016,12(25):3415-3422. [74] HU Y S,KLEIMAN-SHWARSCTEIN A,STUCKY G D,et al. Improved photoelectrochemical performance of Ti-doped α-Fe2O3 thin films by surface modification with fluoride[J]. Chem. Commun.,2009(19):2652-2654. [75] KIM J Y,JANG J W,YOUN D H,et al. A stable and efficient hematite photoanode in a neutral electrolyte for solar water splitting:towards stability engineering[J]. Advanced Energy Materials,2014,4(13):DOI:10.1002/aenm.201400476. [76] NEUFELD O,YATOM N,CASPARY TOROKER M. A first-principles study on the role of an Al2O3 overlayer on Fe2O3 for water splitting[J]. ACS Catalysis,2015,5(12):7237-7243. [77] FORMAL B F L,GR TZEL M,SIVULA K. Controlling photoactivity in ultrathin hematite films for solar water-splitting[J]. Adv. Funct. Mater.,2010,20(7):1099-1107. [78] HISATOMI T,DOTAN H,STEFIK M,et al. Enhancement in the performance of ultrathin hematite photoanode for water splitting by an oxide underlayer[J]. Adv. Mater.,2012,24(20):2699-2702. [79] LI J T,CUSHING S K,ZHENG P,et al. Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array[J]. Nat. Commun.,2013,4:DOI:10.1038/ncomms3651. [80] JUE WANG,PAN S,CHEN M,et al. Gold nanorod-enhanced light absorption and photoelectrochemical performance of α-Fe2O3 thin-film electrode for solar water splitting[J]. J. Phys. Chem. C,2013,117(42):22060-22068. [81] 刘东,于海童,杨震,等. 超薄膜吸收器在太阳能光解水制氢中的应用[J]. 化工学报,2015,66(s1):297-301. LIU D,YU H T,YANG Z,et al. Ultrathin film absorber for solar water splitting[J]. CIESC Journal,2015,66(s1):297-301. [82] ZHANG K,SHI X,KIM J K,et al. Inverse opal structured α-Fe2O3 on graphene thin films:enhanced photo-assisted water splitting[J]. Nanoscale,2013,5(5):1939-1944. [83] YANG J,BAO C,YU T,et al. Enhanced performance of photoelectrochemical water splitting with ITO@α-Fe2O3 core-shell nanowire array as photoanode[J]. ACS Appl. Mater. Interfaces,2015,48(7):26482-26490. [84] QIU Y,LEUNG S F,ZHANG Q,et al. Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures[J]. Nano Letters,2014,14(4):2123-2129. [85] LIN Z,LIU P,YAN J,et al. Matching energy levels between TiO2 and α-Fe2O3 in a core-shell nanoparticle for visible-light photocatalysis[J]. J. Mater. Chem. A,2015,28(3):14853-14863. [86] ZHAO P,KRONAWITTER C X,YANG X,et al. WO3-α-Fe2O3 composite photoelectrodes with low onset potential for solar water oxidation[J]. Phys. Chem. Chem. Phys.,2014,16(4):1327-1332. [87] QI X,SHE G,HUANG X,et al. High-performance n-Si/α-Fe2O3 core/shell nanowire array photoanode towards photoelectrochemical water splitting[J]. Nanoscale,2013,6(6):3182-3189. [88] KIM J Y,LEE J S,MAGESH G,et al. Single-crystalline,wormlike hematite photoanodes for efficient solar water splitting[J]. Scientific Reports,2013,3:DOI:10.1038/srepo2681. |
[1] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[2] | 李由, 吴越, 钟禹, 林琦璇, 任俊莉. 酸性熔盐水合物预处理麦秆高效制备木糖及其对酶解效率的影响[J]. 化工进展, 2023, 42(9): 4974-4983. |
[3] | 叶振东, 刘涵, 吕静, 张亚宁, 刘洪芝. 基于钙镁二元盐的热化学储能反应器的性能优化[J]. 化工进展, 2023, 42(8): 4307-4314. |
[4] | 李吉焱, 景艳菊, 邢郭宇, 刘美辰, 龙永, 朱照琪. 耐盐型太阳能驱动界面光热材料及蒸发器的研究进展[J]. 化工进展, 2023, 42(7): 3611-3622. |
[5] | 符淑瑢, 王丽娜, 王东伟, 刘蕊, 张晓慧, 马占伟. 析氧助催化剂增强光阳极光电催化分解水性能研究进展[J]. 化工进展, 2023, 42(5): 2353-2370. |
[6] | 孙崇正, 樊欣, 李玉星, 许洁, 韩辉, 刘亮. 海上多孔介质通道内氢气换热与正仲氢转化的耦合特性[J]. 化工进展, 2023, 42(3): 1281-1290. |
[7] | 杜涛, 马进伟, 陈茜茜, 方浩, 陈秉章, 陈厚仁. PV/T模块复合冷却模式性能对比测试与数值模拟分析[J]. 化工进展, 2023, 42(2): 722-730. |
[8] | 张赫, 李小可, 熊颖, 文劲. 基于水凝胶界面光蒸发的压裂返排液脱盐降污处理[J]. 化工进展, 2023, 42(2): 1073-1079. |
[9] | 韩丽, 李望良, 李艳香, 安高军, 鲁长波. 纤维状钙钛矿太阳能电池研究进展[J]. 化工进展, 2023, 42(10): 5135-5146. |
[10] | 张会霞, 周立山, 张程蕾, 钱光磊, 谢陈鑫, 朱令之. Bi2S3/TiO2纳米锥光阳极的制备及其光电催化降解土霉素[J]. 化工进展, 2023, 42(10): 5548-5557. |
[11] | 李栋先, 王佳, 蒋剑春. 超声辅助下皂脚加压水解制备脂肪酸[J]. 化工进展, 2023, 42(1): 409-416. |
[12] | 白浩良, 王晨, 卢静, 康雪. 聚光光伏系统太阳能电池散热技术及发展现状[J]. 化工进展, 2023, 42(1): 159-177. |
[13] | 毛停停, 李双福, 黄李茗铭, 周川玲, 韩凯. 面向水处理与有机溶剂回收的太阳能界面蒸发系统与材料[J]. 化工进展, 2023, 42(1): 178-193. |
[14] | 寇佳伟, 程淑艳, 程芳琴. 类水滑石基催化剂光催化二氧化碳还原研究进展[J]. 化工进展, 2022, 41(S1): 190-198. |
[15] | 孙培琴, 陈延青, 孔祥北, 金满平, 刘付芳. 醋酸酐与水在化学反应量热方法确认中的应用[J]. 化工进展, 2022, 41(S1): 91-96. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |