[1] 马双忱, 华继洲, 苟发全, 等. 白泥脱硫浆液与石膏理化特性[J]. 化工进展, 2016, 35(s1):381-388. MA S C, HUA J Z, GOU F Q, et al. Physical and chemical properties research of white mud desulfurization slurry and gypsum[J]. Chemical Industry and Engineering Progress, 2016, 35(s1):381-388.
[2] 牛胜利, 李辉, 路春美, 等. 造纸白泥催化花生油与甲醇酯交换的特性研究[J]. 燃料化学学报, 2013, 41(7):856-861. NIU S L, LIU M Q, LU C M, et al. Catalytic performance of papermaking white clay in the transesterification of peanut oil with methanol[J]. Journal of Fuel Chemistry and Technology, 2013, 41(7):856-861.
[3] 李诗杰, 韩奎华, 郝力勇, 等. 钙基废弃物对生物质燃烧脱氯的影响[J]. 化工进展, 2017, 36(5):1914-1918. LI S J, HAN K H, HAO L Y, et al. Dechlorinate effect of calcium-based waste during biomass combustion[J]. Chemical Industry and Engineering Progress, 2017, 36(5):1914-1918.
[4] XU Y Q, LUO C, ZHENG Y, et al. Natural calcium-based sorbents doped with sea salt for cyclic CO2 capture[J]. Chemical Engineering & Technology, 2017, 40(3):522-528.
[5] HE D L, QIN C L, MANOVIC V, et al. Study on the interaction between CaO-based sorbents and coal ash in calcium looping process[J]. Fuel Processing Technology, 2017, 156:339-347.
[6] SUN J, LIU W Q, HU Y C, et al. Enhanced performance of extruded-spheronized carbide slag pellets for high temperature CO2 capture[J]. Chemical Engineering Journal, 2016, 285:293-303.
[7] 余志健, 段伦博, 李小乐,等. 机械成型水泥支撑钙基吸收剂脱碳活性及强度[J]. 化工进展, 2017, 36(6):2222-2229. YU Z J, DUAN L B, LI X L, et al. CO2 capacity and strength of cement-supported Ca-sorbent pelletized by granulator[J]. Chemical Industry and Engineering Progress, 2017, 36(6):2222-2229.
[8] 孙荣岳, 李英杰, 刘长天,等. 白泥循环煅烧/碳酸化捕集CO2的反应特性[J]. 煤炭学报, 2013, 38(4):675-680. SUN R Y, LI Y J, LIU C T, et al. CO2 capture behavior of white mud during calcium looping cycles[J]. Journal of China Coal Society, 2013, 38(4):675-680.
[9] SUN R Y, LI Y J, LIU C T, et al. Utilization of lime mud from paper mill as CO2 sorbent in calcium looping process[J]. Chemical Engineering Journal, 2013, 221(4):124-132.
[10] PEREJÓN A, ROMEO L M, LARA Y, et al. The calcium-looping technology for CO2 capture:on the important roles of energy integration and sorbent behavior[J]. Applied Energy, 2016, 162:787-807.
[11] DUELLI G, BIDWE A R, PAPANDREOU I, et al. Characterization of the oxy-fired regenerator at a 10 kWth dual fluidized bed calcium looping facility[J]. Applied Thermal Engineering, 2015, 74:54-60.
[12] WU S F, LAN P Q. A kinetic model of nano-CaO reactions with CO2 in a sorption complex catalyst[J]. AIChE Journal, 2012, 58(5):1570-1577.
[13] LAN P Q, WU S F. Synthesis of a porous nano-CaO/MgO-based CO2 adsorbent[J]. Chemical Engineering & Technology, 2014, 37(4):580-586.
[14] 孙荣岳, 叶江明, 毕小龙, 等. 丙酸改性提高电石渣捕集CO2 性能的动力学分析[J]. 化工进展, 2017, 36(6):2325-2330. SUN R Y, YE J M, BI X L, et al. Kinetic analysis on CO2 capture performance of carbide slag modified by propionic acid[J]. Chemical Industry and Engineering Progress, 2017, 36(6):2325-2330.
[15] DUAN L B, YU Z J, ERANS M, et al. Attrition study of cement-supported biomass-activated calcium sorbents for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2016, 55(35):9476-9484. |