[1] 陈俊武. 催化裂化工艺与工程[M]. 2版. 北京:中国石化出版社, 2005:89. CHEN Junwu. Catalytic cracking process and engineering[M]. 2nd ed. Beijing:China Petrochemical Press, 2005:89.
[2] 侯芙生. 中国炼油技术[M]. 3版. 北京:中国石化出版社, 2011:1039. HOU Fusheng. China refining technology[M]. 3rd ed. Beijing:China Petrochemical Press, 2011:1039.
[3] 刘家海,陈清林,王伟,等. 重油催化裂化装置节能措施与效果分析[J]. 炼油技术与工程, 2009(3):55-60. LIU Jiahai, CHEN Qinglin, WANG Wei, et al. Energy saving measures for heavy oil FCCU and result analysis[J]. Petroleum Refinery Engineering, 2009(3):55-60.
[4] 孟宪玲. 我国炼油行业节能综述[J]. 当代石油石化, 2005(3):31-34. MENG Xianling. Summary of energy saving in China's refining industry[J]. Petroleum & Petrochemical Today, 2005(3):31-34.
[5] LINDEN Davidh. Catalyst deposits in FCCU power recovery systems can be controlled[J]. Oil and Gas Journal, 1986, 84(50):33-38.
[6] 卢鹏飞. 烟气轮机动力回收系统的催化剂沉积[J]. 石油化工设备技术, 1988(2):57-62. LU Pengfei. Catalyst deposition of gas turbine power recovery system[J]. Petro-Chemical Equipment Technology, 1988(2):57-62.
[7] CARBONETTO Ben, HOCH Gregl. New designs and applications for increased power recovery and improved reliability in FCC expanders[C]//Proceedings of the Thirsty-First Turbomachinery Symposium. 2002:9-16. Doi:10.21423/R1P375.
[8] 王建军. 催化裂化装置烟机机组2003年停机故障分析与改进措施[J]. 石油化工设备技术, 2004(2):24-26. WANG Jianjun. Analysis and improvement on shut down failure in 2003 for catalytic cracking unit flue gas turbine-expander[J]. Petro-Chemical Equipment Technology, 2004(2):24-26.
[9] 李鹏,曹东学. 催化裂化装置三旋、烟机结垢原因分析及对策[J]. 炼油技术与工程, 2005, 35(3):11-14. LI Peng, CAO Dongxue. Causes of fouling in the third cyclone and flue gas expander of FCC unit and countermeasures[J]. Petroleum Refinery Engineering, 2005, 35(3):11-14.
[10] TABAKOFF W, SHANOV V. Erosion rate testing at high temperature for turbomachinery use[J]. Surface and Coatings Technology, 1995, 1:75-80.
[11] ALBERT J E, BOGARD D G. Experimental simulation of contaminant deposition on a film cooled turbine airfoil leading edge[J]. Journal of Turbomachinery-Transactions of the ASME, 2012, 134:1-10.
[12] LAWSON S, THOLE K. Simulations of multiphase particle deposition on endwall film-cooling holes in transverse trenches[J]. Proceedings of the ASME Turbo Expo, 2012:79-90.
[13] SMITH C, BARKER B, CLUM C, et al. Deposition in a turbine cascade with combusting flow[J]. Proceedings of the ASME Turbo Expo, 2010, 4:743-751.
[14] WEBB J. The effect of particle size and film cooling on nozzle guide vane deposition[D]. Ohio:The Ohio State University, 2011.
[15] CASADAY B, AMERI A, BONS J. Numerical investigation of ash deposition on nozzle guide vane endwalls[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135:1-9.
[16] JENSEN J, SQUIRE S, BONS J, et al. Simulated land-based turbine deposits generated in an accelerated deposition facility[J]. Journal of Turbomachinery, 2004, 127(3):462-470.
[17] AI Weiguo, MURRAY Nathan, FLETCHER Thomash, et al. Deposition near film cooling holes on a high pressure turbine vane[J]. Journal of Turbomachinery, 2011, 134(4):41013.
[18] 胥宏. 叶片型面的三坐标测量数据处理及误差分析与补偿[J]. 工具技术, 2009(9):110-112. XU Hong. Data processing and error analysis and compensation of coordinate measurement of blade profile[J]. Tool Engineering, 2009(9):110-112.
[19] 郭旗. 三坐标测量机在汽轮机叶片测量中的应用[J]. 数字技术与应用, 2010(12):78. GUO Qi. Application of CMM in turbine blade measurement[J]. Digital Technology and Application, 2010(12):78. |