化工进展 ›› 2018, Vol. 37 ›› Issue (08): 3146-3154.DOI: 10.16085/j.issn.1000-6613.2017-1856
陈光宇, 吴林波, 李伯耿
收稿日期:
2017-09-05
修回日期:
2017-11-09
出版日期:
2018-08-05
发布日期:
2018-08-05
通讯作者:
吴林波,教授,研究方向为生物基/可生物降解聚合物。
作者简介:
陈光宇(1996-),男,硕士研究生。E-mail:chenguangyu11@foxmail.com。
基金资助:
CHEN Guangyu, WU Linbo, LI Bogeng
Received:
2017-09-05
Revised:
2017-11-09
Online:
2018-08-05
Published:
2018-08-05
摘要: 2,5-呋喃二甲酸(FDCA)是合成聚(呋喃二甲酸乙二醇酯)(PEF)等生物基聚酯的重要单体,具有广阔的应用前景。FDCA能否实现低廉、高效的大规模生产,是生物基聚酯开发的关键。目前,FDCA合成的研究广受关注,工业化开发也正在进行中。本文对合成生物基单体FDCA的5-羟甲基糠醛(HMF)路线进行综述,重点介绍了水、高沸点有机溶剂、低沸点有机溶剂、双相体系和离子液体中的糖类脱水合成HMF,无碱水溶液、碱性水溶液和有机溶剂中的HMF氧化合成FDCA以及糖类一锅法合成FDCA的研究进展。在比较各种合成方法的基础上,认为当前应着重研究开发低沸点溶剂中糖类脱水合成HMF以及无碱水溶液或有机溶剂中低廉高效的HMF氧化新方法,并向着糖类一锅法合成FDCA的方向发展。
中图分类号:
陈光宇, 吴林波, 李伯耿. HMF路线合成生物基单体2,5-呋喃二甲酸的研究进展[J]. 化工进展, 2018, 37(08): 3146-3154.
CHEN Guangyu, WU Linbo, LI Bogeng. Progress in the synthesis of bio-based monomer 2,5-furandicarboxylic acid through 5-hydroxymethylfurfural route[J]. Chemical Industry and Engineering Progress, 2018, 37(08): 3146-3154.
[1] DE JONG E. Furandicarboxylic acid (FDCA). A versatile building block for a very interesting class of polyesters[J]. ACS Symposium, 2012, 1105(13):1-13. [2] 周佳栋, 曹飞, 余作龙, 等. 生物基聚酯单体2,5-呋喃二甲酸的制备及应用研究进展[J]. 高分子学报, 2016(1):1-13. ZHOU J D, CAO F, YU Z L, et al. Research progress in preparation and application of bio-based 2,5-furandicarboxylic acid as polyester monomer[J]. Acta Polymerica Sinica, 2016(1):1-13. [3] 邹彬, 陈学珊, 郭静. 5-羟甲基糠醛催化氧化为2,5-呋喃二甲酸的研究进展[J]. 应用化工, 2016, 45(11):2130-2134. ZOU B, CHEN X S, GUO J. Research progress of catalytical oxidation of 5-hydroxymetylfurfural to 2,5-furandicarboxylic acid[J]. Applied Chemical Industry, 2016, 45(11):2130-2134. [4] 王静刚, 刘小青, 朱锦. 生物基芳香平台化合物2,5-呋喃二甲酸的合成研究进展[J]. 化工进展, 2017, 36(2):672-682. WANG J G, LIU X Q, ZHU J. Research progress on the synthesis of bio-based aromatic platform chemical 2,5-furandicarboxylic acid[J]. Chemical Industry and Engineering Progress, 2017, 36(2):672-682. [5] 刘贤响, 徐琼, 苏胜培, 等. 生物质碳水化合物催化转化制2,5-呋喃二甲酸的研究进展[J]. 石油化工, 2016, 45(7):872-879. LIU X X, XU Q, SU S P, et al. Research progress of catalytic conversion of biomass carbohydrates to 2,5-furandicarboxylic acid[J]. Petrochemical Technology, 2016, 45(7):872-879. [6] 杨艳平, 沈明贵, 商士斌, 等. 纤维素在不同溶剂中催化转化制备5-羟甲基糠醛的研究进展[J]. 生物质化学工程, 2016, 50(4):47-52. YANG Y P, SHEN M G, SHANG S B, et al. Research progress of cellulose catalytic conversion for preparation of 5-HMF in different solvents[J]. Biomass Chemical Engineering, 2016, 50(4):47-52. [7] QIAO Y, THEYSSEN N, HOU Z. Acid-catalyzed dehydration of fructose to 5-(hydroxymethyl)furfural[J]. Recyclable Catalysis, 2015, 2(1):36-60. [8] ZHANG Z, DENG K. Recent advances in the catalytic synthesis of 2,5-furandicarboxylic acid and its derivatives[J]. ACS Catalysis, 2015, 5(11):6529-6544 [9] GROTE A, FREIHERRN V, TOLLENS B. Untersuchungen über Kohlenhydrate. I. Ueber die bei Einwirkung von Schwefelsaure auf Zucker entstehende Saure (Levulinsaure)[J]. Justus Liebig's Annalen der Chemie, 1875, 175(1/2):181-204. [10] KUSTER B F M, BAAN H S V D, et al. The influence of the initial and catalyst concentrations on the dehydration of D-fructose[J]. Carbohydrate Research, 1977, 54(2):165-176. [11] KUSTER B F M, STEEN H J C D V. Preparation of 5-hydroxymethylfurfural part I. Dehydration of fructose in a continuous stirred tank reactor[J]. Starch-Starke, 1977, 29(3):99-103. [12] ISHIDA H, SERI K I. Catalytic activity of lanthanoide(Ⅲ) ions for dehydration of D-glucose to 5-(hydroxymethyl)furfural[J]. Journal of Molecular Catalysis A:Chemical, 1996, 112(2):L163-L165. [13] SERI K I, INOUE Y, ISHIDA H. ChemInform abstract:highly efficient catalytic activity of lanthanide(Ⅲ) ions for conversion of saccharides to 5-hydroxymethyl-2-furfural in organic solvents[J]. Cheminform, 2000, 31:22-23. [14] SERI K, SAKAKI T, SHIBATA M. Lanthanum(Ⅲ)-catalyzed degradation of cellulose at 250 degrees[J]. Bioresource Technology, 2002, 81(3):257-260. [15] BICKER M, HIRTH J, VOGEL H. Dehydration of fructose to 5-hydroxymethylfurfural in sub-and supercritical acetone[J]. Green Chemistry, 2003, 5(2):280-284. [16] MOREAU C, DURAND R, RAZIGADE S, et al. Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites[J]. Applied Catalysis A:General, 1996, 145(1/2):211-224. [17] SHEN Y, SUN J, YI Y, et al. 5-Hydroxymethylfurfural and levulinic acid derived from monosaccharides dehydration promoted by InCl3 in aqueous medium[J]. Journal of Molecular Catalysis A:Chemical, 2014, 394:114-120. [18] DENG T, LI J, YANG Q, et al. A selective and economic carbon catalyst from waste for aqueous conversion of fructose into 5-hydroxymethylfurfural[J]. RSC Advances, 2016, 6(36):30160-30165. [19] MERCADIER D, RIGAL L, GASET A, et al. Synthesis of 5-hydroxymethyl-2-furancarboxaldehyde catalyzed by cationic exchange resins. Part 3. Kinetic approach of the D-fructose dehydration[J]. Journal of Chemical Technology & Biotechnology, 1981, 31(1):503-508. [20] RIGAL L, GASET A, GORRICHON J P. Selective conversion of D-fructose to 5-hydroxymethyl-2-furancarboxaldehyde using a water-solvent-ion-exchange resin triphasic system[J]. Industrial & Engineering Chemistry Product Research & Development, 1981, 20(4):719-721. [21] SCHÖN M, SCHNÜRCH M, MIHOVILOVIC M D. Application of continuous flow and alternative energy devices for 5-hydroxymethylfurfural production[J]. Molecular Diversity, 2011, 15(3):639-643. [22] NAKAMURA Y, MORIKAWA S. The dehydration of D-fructose to 5-hydroxymethyl-2-furaldehyde[J]. Bulletin of the Chemical Society of Japan, 1980, 53(12):3705-3706. [23] SHIMIZU K I, UOZUMI R, SATSUMA A. Enhanced production of hydroxymethylfurfural from fructose with solid acid catalysts by simple water removal methods[J]. Catalysis Communications, 2009, 10(14):1849-1853. [24] OHARA M, TAKAGAKI A, NISHIMURA S, et al. Syntheses of 5-hydroxymethylfurfural and levoglucosan by selective dehydration of glucose using solid acid and base catalysts[J]. Applied Catalysis A:General, 2010, 383(1/2):149-155. [25] WANG C, FU L, TONG X, et al. Efficient and selective conversion of sucrose to 5-hydroxymethylfurfural promoted by ammonium halides under mild conditions[J]. Carbohydrate Research, 2012, 347(1):182-185. [26] TONG X, LI M, YAN N, et al. Defunctionalization of fructose and sucrose:iron-catalyzed production of 5-hydroxymethylfurfural from fructose and sucrose[J]. Catalysis Today, 2011, 175(1):524-527. [27] TIAN G, TONG X, WANG Y, et al. Highly efficient and N-bromosuccinimide-mediated conversion of carbohydrates to 5-hydroxymethylfurfural under mild conditions[J]. Research on Chemical Intermediates, 2013, 39(7):3255-3263. [28] QU Y S, SONG Y L, HUANG C P, et al. Dehydration of fructose to 5-hydroxymethylfurfural catalyzed by alkaline ionic liquid[J]. Advanced Materials Research, 2011, 287-290:1585-1590. [29] AELLIG C, HERMANS I. Continuous D-fructose dehydration to 5-hydroxymethylfurfural under mild conditions[J]. ChemSusChem, 2012,5(9):1737-1742. [30] LAI L, ZHANG Y. The production of 5-hydroxymethylfurfural from fructose in isopropyl alcohol:a green and efficient system[J]. ChemSusChem, 2011, 4(12):1745-1748. [31] YI G, TEONG S P, LI X, et al. Purification of biomass-derived 5-hydroxymethylfurfural and its catalytic conversion to 2,5-furandicarboxylic acid[J]. ChemSusChem, 2014, 7(8):2131-2135. [32] KUO C H, POYRAZ A S, JIN L, et al. Heterogeneous acidic TiO2 nanoparticles for efficient conversion of biomass derived carbohydrates[J]. Green Chemistry, 2013, 16(2):785-791. [33] ZHU H, CAO Q, LI C, et al. Acidic resin-catalysed conversion of fructose into furan derivatives in low boiling point solvents[J]. Carbohydrate Research, 2011, 346(13):2016-8. [34] GALLO J M R, ALONSO D M, MELLMER M A, et al. Production and upgrading of 5-hydroxymethylfurfural using heterogeneous catalysts and biomass-derived solvents[J]. Green Chemistry, 2012, 15(1):85-90. [35] OKANO T, QIAO K, BAO Q, et al. Dehydration of fructose to 5-hydroxymethylfurfural(HMF) in an aqueous acetonitrile biphasic system in the presence of acidic ionic liquids[J]. Applied Catalysis A:General, 2013, 451(2):1-5. [36] LV G, DENG L, LU B, et al. Efficient dehydration of fructose into 5-hydroxymethylfurfural in aqueous medium over silica-included heteropolyacids[J]. Journal of Cleaner Production, 2017, 142:2244-2251. [37] ROMAN L Y, CHHEDA J N, DUMESIC J A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose[J]. Science, 2006, 312(5782):1933. [38] YANG F, LIU Q, BAI X, et al. Conversion of biomass into 5-hydroxymethylfurfural using solid acid catalyst[J]. Bioresource Technology, 2011, 102(3):3424. [39] NAN J, WEI Q, HUANG R, et al. Production enhancement of 5-hydroxymethyl furfural from fructose via mechanical stirring control and high-fructose solution addition[J]. Journal of Chemical Technology & Biotechnology, 2013, 89(1):56-64. [40] RANOUX A, DJANASHVILI K, ARENDS I C, et al. B-TUD-1:a versatile mesoporous catalyst[J]. RSC Advances, 2013, 3(44):21524-21534. [41] FAYET C, GELAS J. NOUVELLE. Methode de preparation du 5-hydroxymethyl-2-furaldehyde par action de sels d'ammonium ou d'immonium sur les mono-, oligo-et poly-saccharides. Acces direct aux 5-halogenomethyl-2-furaldehydes[J]. Carbohydrate Research, 1983, 122(1):59-68. [42] LANSALOT M C, MOREAU C. Dehydration of fructose into 5-hydroxymethylfurfural in the presence of ionic liquids[J]. Catalysis Communications, 2003, 4(10):517-520. [43] MOREAU C, FINIELS A, VANOYE L. Dehydration of fructose and sucrose into 5-hydroxymethylfurfural in the presence of 1-H-3-methyl imidazolium chloride acting both as solvent and catalyst[J]. Journal of Molecular Catalysis A:Chemical, 2006, 253(1/2):165. [44] LI C, ZHAO Z K, WANG A, et al. Production of 5-hydroxymethylfurfural in ionic liquids under high fructose concentration conditions[J]. Carbohydrate Research, 2010, 345(13):1846-1850. [45] NING H, SONG J L, HOU M Q, et al. Efficient dehydration of carbohydrates to 5-hydroxymethylfurfural in ionic liquids catalyzed by tin(IV) phosphonate and zirconium phosphonate[J]. Science China Chemistry, 2013, 56(11):1578-1585. [46] TIAN C, ZHU X, CHAI S H, et al. Three-phase catalytic system of H2O, ionic liquid, and VOPO4-SiO2 solid acid for conversion of fructose to 5-hydroxymethylfurfural[J]. ChemSusChem, 2014, 7(6):1703. [47] CAO Q, GUO X, YAO S, et al. Conversion of hexose into 5-hydroxymethylfurfural in imidazolium ionic liquids with and without a catalyst[J]. Carbohydrate Research, 2011, 346(7):956-959. [48] SHI J, LIU W, WANG N, et al. Production of 5-hydroxymethylfurfural from mono-and disaccharides in the presence of ionic liquids[J]. Catalysis Letters, 2014, 144(2):252-260. [49] XIAO Y, SONG Y F. Efficient catalytic conversion of the fructose into 5-hydroxymethylfurfural by heteropolyacids in the ionic liquid of 1-butyl-3-methyl imidazolium chloride[J]. Applied Catalysis A:General, 2014, 484(10):74-78. [50] LI Y, LIU H, SONG C, et al. The dehydration of fructose to 5-hydroxymethylfurfural efficiently catalyzed by acidic ion-exchange resin in ionic liquid[J]. Bioresource Technology, 2013, 133(2):347-353. [51] BENOIT M, BRISSONNET Y, GUELOU E, et al. Acid-catalyzed dehydration of fructose and inulin with glycerol or glycerol carbonate as renewably sourced co-solvent[J]. ChemSusChem, 2010, 3(11):1304-1309. [52] AMARASEKARA A S, OWEREH O S. Hydrolysis and decomposition of cellulose in brönsted acidic ionic liquids under mild conditions[J]. Industrial & Engineering Chemistry Research, 2009, 48(22):10152-10155. [53] RASS H A, ESSAYEM N, BESSON M. Selective aqueous phase oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Pt/C catalysts:influence of the base and effect of bismuth promotion[J]. Green Chemistry, 2013, 15(8):2240-2251. [54] MIAO Z, WU T, LI J, et al. Aerobic oxidation of 5-hydroxymethylfurfural(HMF) effectively catalyzed by a Ce0.8Bi0.2O2-d supported Pt catalyst at room temperature[J]. RSC Advances, 2015, 5(26):19823-19829. [55] SIYO B, SCHNEIDER M, POHL M M, et al. Synthesis, characterization, and application of PVP-Pd NP in the aerobic oxidation of 5-hydroxymethylfurfural(HMF)[J]. Catalysis Letters, 2014, 144(3):498-506. [56] LIU B, REN Y, ZHANG Z. Aerobic oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid in water under mild conditions[J]. Green Chemistry, 2014, 17(3):1610-1617. [57] CASANOVA O, IBORRA S, CORMA A. Biomass into chemicals:aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid with gold nanoparticle catalysts[J]. ChemSusChem, 2009, 2(12):1138-1144. [58] HAYASHI E, KOMANOYA T, KAMATA K, et al. Heterogeneously-catalyzed aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid with MnO2[J]. ChemSusChem, 2017, 10(4):654-658. [59] HAN X, LI C, LIU X, et al. Selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over MnOx-CeO2 composite catalysts[J]. Green Chemistry, 2016, 19:996. [60] ZHANG S, ZHANG L. A facile and effective method for preparation of 2,5-furandicarboxylic acid via hydrogen peroxide direct oxidation of 5-hydroxymethylfurfural[J]. Polish Journal of Chemical Technology, 2017, 19(1):11-16. [61] SAHU R, DHEPE P L. Synthesis of 2,5-furandicarboxylic acid by the aerobic oxidation of 5-hydroxymethyl furfural over supported metal catalysts[J]. Reaction Kinetics, Mechanisms and Catalysis, 2014, 112(1):173-187. [62] DAVIS S E, HOUK L R, TAMARGO E C, et al. Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts[J]. Catalysis Today, 2011, 160(1):55-60. [63] PASINI T, PICCININI M, BLOSI M, et al. Selective oxidation of 5-hydroxymethyl-2-furfural using supported gold-copper nanoparticles[J]. Green Chemistry, 2011, 13(8):2091-2099. [64] PARTENHEIMER W, GRUSHIN V V. Synthesis of 2,5-diformylfuran and furan-2,5-dicarboxylic acid by catalytic air-oxidation of 5-hydroxymethylfurfural. unexpectedly selective aerobic oxidation of benzyl alcohol to benzaldehyde with metal-bromide catalysts[J]. Advanced Synthesis & Catalysis, 2001, 343(1):102-111. [65] SAHA B, DUTTA S, ABU-OMAR M M. Aerobic oxidation of 5-hydroxylmethylfurfural with homogeneous and nanoparticulate catalysts[J]. Catalysis Science & Technology, 2011, 2(1):79-81. [66] GUPTA N K, NISHIMURA S, TAKAGAKI A, et al. ChemInform abstract:hydrotalcite-supported gold-nanoparticle-catalyzed highly efficient base-free aqueous oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under atmospheric oxygen pressure[J]. Green Chemistry, 2011, 13(13):824-827. [67] CHOUDHARY H, EBITANI K. Hydrotalcite-supported PdPt-catalyzed aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid in water[J]. Chemistry Letters, 2016, 45(6):613-615. [68] HAN X W, LI C Q, GUO Y, et al. N-doped carbon supported Pt catalyst for base-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid[J]. Applied Catalysis A:General, 2016, 526:1-8. [69] HAN X W, GENG L, GUO Y, et al. Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Pt/C-O-Mg catalyst[J]. Green Chemistry, 2016, 18(6):1597-1604. [70] GORBANEV Y Y, KEGNAES S, RⅡSAGER A. Effect of support in heterogeneous ruthenium catalysts used for the selective aerobic oxidation of HMF in water[J]. Topics in Catalysis, 2011, 54(16-18):1318-1324. [71] YI G, TEONG S P, ZHANG Y. Base-free conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Ru/C catalyst[J]. Green Chemistry, 2016, 18(4):979-983. [72] WAN X, ZHOU C, CHEN J, et al. Base-free aerobic oxidation of 5-hydroxymethyl-furfural to 2,5-furandicarboxylic acid in water catalyzed by functionalized carbon nanotube-supported Au-Pd alloy nanoparticles[J]. ACS Catalysis, 2014, 4(7):2175-2185. [73] SAHA B, GUPTA D, ABU-OMAR M M, et al. Porphyrin-based porous organic polymer-supported iron(Ⅲ) catalyst for efficient aerobic oxidation of 5-hydroxymethyl-furfural into 2,5-furandicarboxylic acid[J]. Journal of Catalysis, 2013, 299(2):316-320. [74] SUN Y, MA H, JIA X, et al. A high-performance base-metal approach for the oxidative esterification of 5-hydroxymethylfurfural[J]. ChemCatChem, 2016, 8(18):2907-2911. [75] SIANKEVICH S, SAVOGLIDIS G, FEI Z, et al. A novel platinum nanocatalyst for the oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under mild conditions[J]. Journal of Catalysis, 2014, 315(6):67-74. [76] GAO L, DENG K, ZHENG J, et al. Efficient oxidation of biomass derived 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid catalyzed by Merrifield resin supported cobalt porphyrin[J]. Chemical Engineering Journal, 2015, 270:444-449. [77] WANG S, ZHANG Z, LIU B. Catalytic conversion of fructose and 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid over a recyclable Fe3O4-CoOx magnetite nanocatalyst[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(3):406-412. [78] ZHANG L, LUO X, LI Y. A new approach for the aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid without using transition metal catalysts[J]. Journal of Energy Chemistry, 2018, 27(1):243-249. [79] KRÖGER M, PRÜBE U, VORLOP K D. A new approach for the production of 2,5-furandicarboxylic acid by in situ oxidation of 5-hydroxymethylfurfural starting from fructose[J]. Topics in Catalysis, 2000, 13(3):237-242. [80] YI G, TEONG S P, ZHANG Y. The direct conversion of sugars into 2,5-furandicarboxylic acid in a triphasic system[J]. ChemSusChem, 2015, 8(7):1151-1155. [81] RIBEIRO M L, SCHUCHARDT U. Cooperative effect of cobalt acetylacetonate and silica in the catalytic cyclization and oxidation of fructose to 2,5-furandicarboxylic acid[J]. Catalysis Communications, 2003, 4(2):83-86. |
[1] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[2] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[3] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[4] | 向硕, 卢鹏, 石伟年, 杨鑫, 何燕, 朱立业, 孔祥微. 二维WS2纳米片的规模化可控制备及其摩擦学性能[J]. 化工进展, 2023, 42(9): 4783-4790. |
[5] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[6] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[7] | 叶振东, 刘涵, 吕静, 张亚宁, 刘洪芝. 基于钙镁二元盐的热化学储能反应器的性能优化[J]. 化工进展, 2023, 42(8): 4307-4314. |
[8] | 郭立行, 庞蔚莹, 马克遥, 杨镓涵, 孙泽辉, 张盼, 付东, 赵昆. 层序空间多孔结构TiO2实现高效光催化CO2还原[J]. 化工进展, 2023, 42(7): 3643-3651. |
[9] | 李佳, 樊星, 陈莉, 李坚. 硝酸生产尾气中NO x 和N2O联合脱除技术研究进展[J]. 化工进展, 2023, 42(7): 3770-3779. |
[10] | 丁文金, 刘卓齐, 卢海臣, 孙红娟, 彭同江. CH3COONa-NH4OH-H2O体系下磷石膏矿化CO2-联产高纯CaCO3[J]. 化工进展, 2023, 42(7): 3824-3833. |
[11] | 王帅旗, 王从新, 王学林, 田志坚. 无溶剂快速合成ZSM-12分子筛[J]. 化工进展, 2023, 42(7): 3561-3571. |
[12] | 陆诗建, 张媛媛, 吴文华, 杨菲, 刘玲, 康国俊, 李清方, 陈宏福, 王宁, 王风, 张娟娟. 百万吨级CO2捕集项目亚硝胺污染物扩散健康风险评估[J]. 化工进展, 2023, 42(6): 3209-3216. |
[13] | 王久衡, 荣鼐, 刘开伟, 韩龙, 水滔滔, 吴岩, 穆正勇, 廖徐情, 孟文佳. 水蒸气强化纤维素模板改性钙基吸附剂固碳性能及强度[J]. 化工进展, 2023, 42(6): 3217-3225. |
[14] | 王保文, 刘同庆, 张港, 李炜光, 林德顺, 王梦家, 马晶晶. CuFe2O4改性脱硫渣氧载体与褐煤的反应特性[J]. 化工进展, 2023, 42(6): 2884-2894. |
[15] | 张巍, 秦川, 谢康, 周运河, 董梦瑶, 李婕, 汤云灏, 马英, 宋健. H2-SCR改性铂系催化剂低温脱硝的应用及性能强化挑战[J]. 化工进展, 2023, 42(6): 2954-2962. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |