[1] 高峰,聂祚仁,王志宏,等. 皮江法炼镁能源利用方案的环境影响[J]. 北京工业大学学报, 2008, 34(6):646-651. GAO Feng, NIE Zuoren, WANG Zhihong, et al. Environmental impact of the energy utilization programme by using Pidgeon method[J]. Journal of Beijing University of Technology, 2008, 34(6):646-651.
[2] CHUNG S, HSU Y. Combustion synthesis of boron nitride via magnesium reduction under low nitrogen pressures[J]. Journal of the American Ceramic Society, 2015, 97(11):3418-3424.
[3] 杨康定,陈群,任建勋. 炼镁还原罐内传热与化学反应的耦合特性[J]. 清华大学学报(自然科学版), 2009(5):755-758. YANG Kangding, CHEN Qun, REN Jianxun. Coupled heat transfer and chemical reactions in magnesium production retorts[J]. Journal of Tsinghua University (Natural Science Edition), 2009(5):755-758.
[4] 郭水华,冯俊小,邵鼎. 新型双蓄热镁还原炉自动控制系统开发[J]. 轻金属, 2008(11):41-45. GUO Shuihua, FENG Junxiao, SHAO Ding. Control system for new type double-regenerative Mg reducing furnace[J]. Light Metals, 2008(11):41-45.
[5] 吴永. 皮江法炼镁工艺的一种改良技术及其宏观动力学模型分析[J]. 轻金属, 2016(7):39-47. WU Yong. An improved shrinking core model synthesis method of Pidgeon magnesium smelting process and its macro kinetic model analysis[J]. Light Metals, 2016(7):39-47.
[6] CHERUBINI F, RAUGEI M, ULGIATI S. LCA of magnesium production:technological overview and worldwide estimation of environmental burdens[J]. Resources Conservation & Recycling, 2008, 52(8/9):1093-1100.
[7] 冯俊小,张志远. 镁还原罐内强化换热研究[J]. 北京科技大学学报, 2012, 34(7):830-835. FENG Junxiao, ZHANG Zhiyuan. Enhancement of heat transfer in a magnesium reduction retort[J]. Journal of University of Science and Technology Beijing, 2012, 34(7):830-835.
[8] 任玲, 夏德宏, 毕寒冰. 新型竖置镁还原罐的设计[J]. 有色金属(冶炼部分), 2012(2):30-33. REN Ling, XIA Dehong, BI Hanbing. Design of new type of vertical magnesium reduction jar[J]. Nonferrous Metals(Extractive Metallurgy), 2012(2):30-33.
[9] FENG Junxiao, CHEN Qibo, YU Sijing. Numerical simulation on process of flow and heat transfer in upright magnesium reducing furnace[J]. Advanced Materials Research, 2012(383/390):6657-6662.
[10] BOK H H, CHOI J W, FRÉDÉRIC B, et al. Thermomechanical-metallurgical modeling for hot-press forming in consideration of the prior austenite deformation effect[J]. International Journal of Plasticity, 2014, 58(7):154-183.
[11] MA S J, LIU G, FU G Q X J. Thermo-mechanical model and thermal analysis of hollow cylinder planetary roller screw mechanism[J]. Mechanics Based Design of Structures & Machines:An International Journal, 2015, 43(3):359-381.
[12] ROH H S, HUA T Q, AHLUWALIA R K. Optimization of carbon fiber usage in type 4 hydrogen storage tanks for fuel cell automobiles[J]. International Journal of Hydrogen Energy, 2013, 38(29):12795-12802.
[13] 徐秀东,毛炳权,谭忠,等. 镁醇体系聚丙烯催化剂制备技术进展[J]. 化工进展, 2011, 30(1):155-161. XU Xiudong, MAO Bingquan, TAN Zhong, et al. Advances in preparative technique research used in magnesium alcohol polypropylene catalyst system[J]. Chemical Industry and Engineering Progress, 2011, 30(1):155-161.
[14] PEKSEN M. Numerical thermomechanical modelling of solid oxide fuel cells[J]. Progress in Energy & Combustion Science, 2015, 48:1-20.
[15] SAPORA A, PAGGI M. A coupled cohesive zone model for transient analysis of thermoelastic interface debonding[J]. Computational Mechanics, 2014, 53(4):845-857.
[16] XU Q, FENG J, ZHANG S. Effects of different loads on structure stress of "L"-type large-diameter pipeline under burying and trench conditions based on fluid-structure-heat coupling[J]. International Journal of Heat & Mass Transfer, 2017, 115:387-397.
[17] XU Q, FENG J, ZHANG S. Combined effects of different temperature and pressure loads on the "L"-type large-diameter buried pipeline[J]. International Journal of Heat & Mass Transfer, 2017, 111:953-961.
[18] 闫岩,卢旭晨,王体壮,等. 利用老卤生产高纯氧化镁技术研究进展[J]. 化工进展, 2016, 35(10):3251-3257. YAN Yan, LU Xuchen, WANG Tizhuang, et al. A review on the technologies of high-purity magnesia production from brine[J]. Chemical Industry and Engineering Progress, 2016, 35(10):3251-3257.
[19] 王嵩,毛东森,吴贵升,等. 铜/氧化锆催化剂的制备及应用研究进展[J]. 化工进展, 2008, 27(6):837-843. WANG Song, MAO Dongsen, WU Guisheng, et al. Progress in preparation and application of zirconia-supported copper catalysts[J]. Chemical Industry and Engineering Progress, 2008, 27(6):837-843. |