化工进展 ›› 2016, Vol. 35 ›› Issue (09): 2818-2829.DOI: 10.16085/j.issn.1000-6613.2016.09.025
赵晓非, 杨明全, 章磊, 王顺武, 刘立新
收稿日期:
2015-12-08
修回日期:
2016-03-07
出版日期:
2016-09-05
发布日期:
2016-09-05
通讯作者:
赵晓非(1966-),男,博士,教授,硕士生导师,现主要从事油田化学及油水分离方面的教学及科研工作。E-mail:dqpifxz@163.com。
作者简介:
赵晓非(1966-),男,博士,教授,硕士生导师,现主要从事油田化学及油水分离方面的教学及科研工作。E-mail:dqpifxz@163.com。
基金资助:
ZHAO Xiaofei, YANG Mingquan, ZHANG Lei, WANG Shunwu, LIU Lixin
Received:
2015-12-08
Revised:
2016-03-07
Online:
2016-09-05
Published:
2016-09-05
摘要: 近些年,受自然界中具有超疏水性表面的动植物的启发,在结合外部环境的影响并充分考虑表面化学组成与表面微观结构的基础上,科学研究工作者们已经探究出超疏水性表面的制备方法,并成功制备出超疏水性能表面。伴随研究者们对超疏水性表面更加深入的研究,众多制备超疏水表面的方法不断出现,本文介绍了影响表面润湿性的因素,归纳超疏水涂层表面的6种常用的制备方法,其中包括等离子体法、刻蚀法、溶胶-凝胶法、沉积法、模板法、层-层自组装法等方法,以及超疏水表面在流体减阻、防积雪防冰冻、防腐蚀、油水分离等方面的应用情况;并对超疏水将来的发展进行了展望。应进一步研究力学性能的稳定性、被损的自修复能力等。
中图分类号:
赵晓非, 杨明全, 章磊, 王顺武, 刘立新. 仿生超疏水表面的制备与应用的研究进展[J]. 化工进展, 2016, 35(09): 2818-2829.
ZHAO Xiaofei, YANG Mingquan, ZHANG Lei, WANG Shunwu, LIU Lixin. Research progress in fabrication and application of bioinspired super-hydrophobic surface[J]. Chemical Industry and Engineering Progree, 2016, 35(09): 2818-2829.
[1] OBERLI L,CARUSO D,HALL C,et al. Condensation and freezing of droplets on superhydrophobic surfaces[J]. Advances in Colloid & Interface Science,2013,210(8):47-57. [2] LUDMILA B, ALEXANDRE E. Principles of design of superhydrophobic coatings by deposition from dispersions[J]. Langmuir,2009,25(25):2907-12. [3] BHARAT B,CHAE J Y,KERSTIN K. Self-cleaning efficiency of artificial superhydrophobic surfaces[J]. Langmuir,2009,25(25):3240-3248. [4] LING XY,PHANG IY,VANCSO GJ,et al. Stable and transparent superhydrophobic nanoparticle films[J]. Langmuir the Acs Journal of Surfaces & Colloids,2009,25(5):3260-3263. [5] NEINHUIS C,BARTHLOTT W. Characterization and distribution of water-repellent,self-cleaning plant surfaces[J]. Annals of Botany, 1997,79(6):667-677. [6] NAKAJIMA A, FUJISHIMA A, HASHIMOTO K, et al. ChemInform Abstract:preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate[J]. Advanced Materials,1999,11(16):1365-1368. [7] ZHANG X,SHI F,NIU J,et al. Superhydrophobic surfaces:from structural control to functional application[J]. Journal of Materials Chemistry,2008,18(6):621-633. [8] PATANKAR N A. Mimicking the lotus effect:influence of double roughness structures and slender pillars[J]. Langmuir the Acs Journal of Surfaces & Colloids,2004,20(19):8209-8213. [9] JIANG L. Super-hydrophobic surfaces from natural to artificial[J]. Modern Scientific Instruments,2003,34(7):1857-1860. [10] WANG S, ZHU Y, XIA F, et al. The preparation of a superhydrophilic carbon film from a superhydrophobic lotus leaf[J] Carbon,2006,44(9):1848-1850. [11] CHANG C H,HSU M H,WENG C J,et al. 3D-bioprinting approach to fabricate superhydrophobic epoxy/organophilic clay as an advanced anticorrosive coating with the synergistic effect of superhydrophobicity and gas barrier properties[J]. J. Mater. Chem. A,2013,1(44):13869-13877. [12] CHANG K C,HSU M H,LU H I,et al. Room-temperature cured hydrophobic epoxy/graphene composites as corrosion inhibitor for cold-rolled steel[J]. Carbon,2014,66:144-153. [13] PENG P P,KE Q,ZHOU G,et al. Fabrication of microcavity-array superhydrophobic surfaces using an improved template method[J]. Journal of Colloid and Interface Science,2013,395:326-328. [14] FENG L,ZHANG Y,XI J,et al. Petal effect:a superhydrophobic state with high adhesive force[J]. Langmuir,2008,24(8):4114-4119. [15] BHUSHAN B,HER E K. Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal[J]. Langmuir, 2010,26(11):8207-8217. [16] LEE W,JIN M K,YOO W C,et al. Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability[J]. Langmuir,2004,20(18):7665-7669. [17] BAI F,WU J,GONG G,et al. Biomimetic "Water Strider Leg" with highly refined nanogroove structure and remarkable water-repellent performance[J]. ACS Applied Materials & Interfaces,2014,6(18):16237-16242. [18] XU L,YAO X,ZHENG Y. Direction-dependent adhesion of water strider's legs for water-walking[J]. Solid State Sciences,2012, 14(8):1146-1151. [19] SU Y,JI B,HUANG Y,et al. Nature's design of hierarchical superhydrophobic surfaces of a water strider for low adhesion and low-energy dissipation[J]. Langmuir,2010,26(24):18926-18937. [20] FENG X Q,GAO X,WU Z,et al. Superior water repellency of water strider legs with hierarchical structures:experiments and analysis[J]. Langmuir,2007,23(9):4892-4896. [21] ZHENG Y, GAO X, JIANG L. Directional adhesion of superhydrophobic butterfly wings[J]. Soft Matter,2007,3(2):178-182. [22] POTYRAILO R A,GHIRADELLA H,VERTIATCHIKH A,et al. Morpho butterfly wing scales demonstrate highly selective vapour response[J]. Nature Photonics,2007,1(2):123-128. [23] WENZEL R N. Resistance of solid surfaces to wetting by water[J].Industrial & Engineering Chemistry,1936,28(8):988-994. [24] CASSIE A B D,BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society,1944,40:546-551. [25] BARTHLOTT W,NEINHUIS C. Purity of the sacred lotus,or escape from contamination in biological surfaces[J]. Planta,1997, 202(1):1-8. [26] HIGGINS A M,JONES R A L. Anisotropic spinodal dewetting as a route to self-assembly of patterned surfaces[J]. Nature,2000,404(6777):476-478. [27] JIANG L,WANG R,YANG B, et al. Binary cooperative complementary nanoscale interfacial materials[J]. Pure and Applied Chemistry,2000,72(1/2):73-81. [28] ELLISON A H,FOX H W,ZISMAN W A. Wetting of fluorinated solids by hydrogen-bonding liquids[J]. The Journal of Physical Chemistry,1953,57(7):622-627. [29] HARE E F,ZISMAN W A. Autophobic liquids and the properties of their adsorbed films[J]. The Journal of Physical Chemistry,1955, 59(4):335-340. [30] YIN S, WU D, YANG J, et al. Fabrication and surface characterization of biomimic superhydrophobic copper surface by solution-immersion and self-assembly[J]. Applied Surface Science, 2011,257(20):8481-8485. [31] YOUNG T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London,1805,95:65-87. [32] REN S,YANG S,ZHAO Y,et al. Preparation and characterization of an ultrahydrophobic surface based on a stearic acid self-assembled monolayer over polyethyleneimine thin films[J]. Surface Science,2003,546(2):64-74. [33] WANG J,LI D,GAO R,et al. Construction of superhydrophobic hydromagnesite films on the Mg alloy[J]. Materials Chemistry and Physics,2011,129(1):154-160. [34] WANG J,LI D,LIU Q,et al. Fabrication of hydrophobic surface with hierarchical structure on Mg alloy and its corrosion resistance[J]. Electrochimica Acta,2010,55(22):6897-6906. [35] FRESNAIS J,CHAPEL J P,PONCIN-EPAILLARD F. Synthesis of transparent superhydrophobic polyethylene surfaces[J]. Surface and Coatings Technology,2006,200(18):5296-5305. [36] OU J,HU W,WANG Y,et al. Construction and corrosion behaviors of a bilayer superhydrophobic film on copper substrate[J]. Surface and Interface Analysis,2013,45(3):698-704. [37] FENG L,ZHANG Z,MAI Z,et al. A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water[J]. Angewandte Chemie International Edition,2004,43(15):2012-2014. [38] 潘立宁,董慧茹,毕鹏禹. SDBS/HCl化学刻蚀法制备具有纳米-微米混合结构的铝基超疏水表面[J]. 高等学校化学学报,2009, 30(7):1371-1374. [39] TESHIMA K,SUGIMURA H,INOUE Y,et al. Transparent ultra water-repellent poly(ethylene terephthalate)substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating[J]. Applied Surface Science,2005,244(1):619-622. [40] GUO P,ZHAI S,XIAO Z,et al. One-step fabrication of highly stable,superhydrophobic composites from controllable and low-cost PMHS/TEOS sols for efficient oil cleanup[J]. Journal of Colloid and Interface Science,2015,446:155-162. [41] NISHINO T,MEGURO M,NAKAMAE K,et al. The lowest surface free energy based on-CF3 alignment[J]. Langmuir,1999,15(13):4321-4323. [42] DETTRE R H,JOHNSON R. Contact angle hysteresis,I. Study of an idealized rough surface[J]. Adv. Chem. Ser.,1964,43:112. [43] ZHANG J, LU X, HUANG W, et al. Reversible superhydrophobicity to superhydrophilicity transition by extending and unloading an elastic polyamide film[J]. Macromolecular Rapid Communications,2005,26(6):477-480. [44] TIAN D,ZHANG X,TIAN Y,et al. Photo-induced water-oil separation based on switchable superhydrophobicity-superhydrophilicity and underwater superoleophobicity of the aligned ZnO nanorod array-coated mesh films[J]. Journal of Materials Chemistry,2012, 22(37):19652-19657. [45] TIAN D,ZHANG X,ZHAI J,et al. Photocontrollable water permeation on the micro/nanoscale hierarchical structured ZnO mesh films[J]. Langmuir,2011,27(7):4265-4270. [46] TIAN D,ZHANG X,WANG X,et al. Micro/nanoscale hierarchical structured ZnO mesh film for separation of water and oil[J]. Physical Chemistry Chemical Physics,2011,13(32):14606-14610. [47] GENG Z,GUAN S,JIANG H,et al. pH-sensitive wettability induced by topological and chemical transition on the self assembled surface of block copolymer[J]. Chinese Journal of Polymer Science, 2014,32(1):92-97. [48] KRUPENKIN T N,TAYLOR J A,SCHNEIDER T M,et al. From rolling ball to complete wetting:the dynamic tuning of liquids on nanostructured surfaces[J]. Langmuir,2004,20(10):3824-3827. [49] LAHANN J,MITRAGOTRI S,TRAN T N,et al. A reversibly switching surface[J]. Science,2003,299(5605):371-374. [50] LIU N,CAO Y,LIN X,et al. A facile solvent-manipulated mesh for reversible oil/water separation[J]. ACS Applied Materials & Interfaces,2014,6(15):12821-12826. [51] CAO Y,LIU N,FU C,et al. Thermo and pH dual-responsive materials for controllable oil/water separation[J]. ACS Applied Materials & Interfaces,2014,6(3):2026-2030. [52] 夏秋,刘峰,宋弘清,等. 环氧底漆表面合成超疏水涂层减阻性能研究[J]. 真空科学与技术学报,2015,35(4):508-513. [53] YOUNGBLOOD J P,MCCARTHY T J. Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly (tetrafluoroethylene) using radio frequency plasma[J]. Macromolecules,1999,32(20):6800-6806. [54] 崔晓松,姚希,刘海华,等. 超疏水表面微纳结构设计与制备及润湿行为调控(Ⅱ)[J]. 中国材料进展,2010(2):31-44. [55] QIAN B,SHEN Z. Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum,copper,and zinc substrates[J]. Langmuir,2005,21(20):9007-9009. [56] XU W,SONG J,SUN J,et al. Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces[J]. ACS Applied Materials & Interfaces,2011,3(11):4404-4414. [57] 李艳峰,于志家,于跃飞,等. 铝合金基体上超疏水表面的制备[J]. 高校化学工程学报,2008,22(1):6-10. [58] LIU L,XU F,MA L. Facile fabrication of a superhydrophobic Cu surface via a selective etching of high-energy facets[J]. The Journal of Physical Chemistry C,2012,116(35):18722-18727. [59] WANG X, LIU X, ZHOU F, et al. Self-healing superamphiphobicity[J]. Chemical Communications,2011,47(8):2324-2326. [60] YIN B,FANG L,HU J,et al. A facile method for fabrication of superhydrophobic coating on aluminum alloy[J]. Surface and Interface Analysis,2012,44(4):439-444. [61] GAO X,YAO X,JIANG L. Effects of rugged nanoprotrusions on the surface hydrophobicity and water adhesion of anisotropic micropatterns[J]. Langmuir,2007,23(9):4886-4891. [62] ZHAO H,LAW K Y. Directional self-cleaning superoleophobic surface[J]. Langmuir,2012,28(32):11812-11818. [63] BALDACCHINI T,CAREY J E,ZHOU M,et al. Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser[J]. Langmuir,2006,22(11):4917-4919. [64] JIN M,FENG X,XI J,et al. Super-hydrophobic PDMS surface with ultra-low adhesive force[J]. Macromolecular Rapid Communications,2005,26(22):1805-1809. [65] YAMANAKA M,SADA K,MIYATA M,et al. Construction of superhydrophobic surfaces by fibrous aggregation of perfluoroalkyl chain-containing organogelators[J]. Chemical Communications, 2006(21):2248-2250. [66] 郑燕升,何易,青勇权,等. SiO2/聚四氟乙烯杂化超疏水涂层的制备[J]. 化工进展,2012,31(7):1562-1566. [67] GURAV A B,LATTHE S S,KAPPENSTEIN C,et al. Porous water repellent silica coatings on glass by sol-gel method[J]. Journal of Porous Materials,2011,18(3):361-367.. [68] MAHADIK S A,KAVALE M S,MUKHERJEE S K,et al. Transparent superhydrophobic silica coatings on glass by sol-gel method[J]. Applied Surface Science,2010,257(2):333-339.. [69] LIM H S,BAEK J H,PARK K,et al. Multifunctional hybrid fabrics with thermally stable superhydrophobicity[J]. Advanced Materials, 2010,22(19):2138-2141. [70] BUDUNOGLU H,YILDIRIM A,GULER M O,et al. Highly transparent, flexible, and thermally stable superhydrophobic ORMOSIL aerogel thin films[J]. ACS Applied Materials & Interfaces,2011,3(2):539-545. [71] KAVALE M S,MAHADIK D B,PARALE V G,et al. Optically transparent,superhydrophobic methyltrimethoxysilane based silica coatings without silylating reagent[J]. Applied Surface Science, 2011,258(1):158-162. [72] SONG X, ZHAI J, WANG Y, et al. Self-assembly of amino-functionalized monolayers on silicon surfaces and preparation of superhydrophobic surfaces based on alkanoic acid dual layers and surface roughening[J]. Journal of Colloid And Interface Science, 2006,298(1):267-273. [73] TAVANA H,AMIRFAZLI A,Neumann A W. Fabrication of superhydrophobic surfaces of n-hexatriacontane[J]. Langmuir, 2006,22(13):5556-5559. [74] WANG P,ZHANG D,QIU R. Liquid/solid contact mode of super-hydrophobic film in aqueous solution and its effect on corrosion resistance[J]. Corrosion Science,2012,54:77-84. [75] DE LEON A C C, PERNITES R B, ADVINCULA R C. Superhydrophobic colloidally textured polythiophene film as superior anticorrosion coating[J]. ACS Applied Materials & Interfaces,2012,4(6):3169-3176. [76] YU Q,ZENG Z,ZHAO W,et al. Fabrication of adhesive superhydrophobic Ni-Cu-P alloy coatings with high mechanical strength by one step electrodeposition[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2013,427:1-6. [77] Andreoli E,Rooney D A,Redington W,et al. Electrochemical deposition of hierarchical micro/nanostructures of copper hydroxysulfates on polypyrrole-polystyrene sulfonate films[J]. The Journal of Physical Chemistry C,2011,115(17):8725-8734. [78] WANG S, SONG Y, JIANG L. Microscale and nanoscale hierarchical structured mesh films with superhydrophobic and superoleophilic properties induced by long-chain fatty acids[J]. Nanotechnology,2006,18(1):015103. [79] HUANG Z,ZHU Y, ZHANG J, et al. Stable biomimetic superhydrophobicity and magnetization film with Cu-ferrite nanorods[J]. The Journal of Physical Chemistry C,2007,111(18):6821-6825. [80] DING Y,LI Y,YANG L,et al. The fabrication of controlled coral-like Cu2O films and their hydrophobic property[J]. Applied Surface Science,2013,266:395-399. [81] CHEN Z,HAO L,CHEN A,et al. A rapid one-step process for fabrication of superhydrophobic surface by electrodeposition method[J]. Electrochimica Acta,2012,59:168-171. [82] WANG B,GUO Z. Superdrophobic copper mesh films with rapid oil/water separation properties by electrochemical deposition inspired from butterfly wing[J]. Applied Physics Letters,2013,103(6):063704-063704-5. [83] PENG C W,CHANG K C,WENG C J,et al. Nano-casting technique to prepare polyaniline surface with biomimetic superhydrophobic structures for anticorrosion application[J]. Electrochimica Acta,2013,95:192-199. [84] CHANG K C,LU H I,PENG C W,et al. Nanocasting technique to prepare lotus-leaf-like superhydrophobic electroactive polyimide as advanced anticorrosive coatings[J]. ACS Applied Materials & Interfaces,2013,5(4):1460-1467. [85] SUN M,LUO C,XU L,et al. Artificial lotus leaf by nanocasting[J]. Langmuir,2005,21(19):8978-8981. [86] CHANG K C,CHUANG T L,JI W F,et al. UV-curable nanocasting technique to prepare bioinspired superhydrophobic organic-inorganic composite anticorrosion coatings[J]. Express Polymer Letters,2015, 9(2):143-153. [87] WENG C J,CHANG C H,PENG C W,et al. Advanced anticorrosive coatings prepared from the mimicked xanthosoma sagittifolium-leaf-like electroactive epoxy with synergistic effects of superhydrophobicity and redox catalytic capability[J]. Chemistry of Materials,2011,23(8):2075-2083. [88] YANG T I,PENG C W,LIN Y L,et al. Synergistic effect of electroactivity and hydrophobicity on the anticorrosion property of room-temperature-cured epoxy coatings with multi-scale structures mimicking the surface of Xanthosoma sagittifolium leaf[J]. Journal of Materials Chemistry,2012,22(31):15845-15852. [89] 刘斌,傅叶勍,阮维青,等. 利用软模板和紫外光固化技术制备超疏水表面[J]. 高分子学报,2008,1(2):155-160. [90] 张诗妍,高常锐,狄桓宇,等. 霸王鞭和麒麟掌叶片的表面微结构及超疏水性[J]. 高等学校化学学报,2012,33(3):564-568. [91] 冯杰,林飞云,黄明达,等. 基于金属模板热压微模塑制备聚烯烃超疏水表面[J]. 高校化学工程学报,2011,25(4):688-694. [92] HUI C Y,JAGOTA A,LIN Y Y,et al. Constraints on microcontact printing imposed by stamp deformation[J]. Langmuir,2002,18(4):1394-1407. [93] HSIA K J,HUANG Y,MENARD E,et al. Collapse of stamps for soft lithography due to interfacial adhesion[J]. Applied Physics Letters,2005,86(15):154106-154106-3. [94] LIU Y,WANG X,FEI B,et al. Bioinspired,stimuli-responsive, multifunctional superhydrophobic surface with directional wetting, adhesion,and transport of water[J]. Advanced Functional Materials, 2015,25(31):5047-5056. [95] ERBIL H Y,DEMIREL A L,AVCY,et al. Transformation of a simple plastic into a superhydrophobic surface[J]. Science,2003, 299(5611):1377-1380. [96] BAE W G,SONG K Y,RAHMAWAN Y,et al. One-step process for superhydrophobic metallic surfaces by wire electrical discharge machining[J]. ACS Applied Materials & Interfaces,2012,4(7):3685-3691. [97] LIU Y,LIU J,LI S,et al. One-step method for fabrication of biomimetic superhydrophobic surface on aluminum alloy[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015,466:125-131. [98] PARK H,SUN G,KIM C J. Superhydrophobic turbulent drag reduction as a function of surface grating parameters[J]. Journal of Fluid Mechanics,2014,747(3):722-734. [99] MICHAEL B. Direct numerical simulations of turbulent flows over superhydrophobic surfaces[J]. Journal of Fluid Mechanics,2009, 620(4):31-41. [100] DANIELLO R J,WATERHOUSE N E,ROTHSTEIN J P. Drag reduction in turbulent flows over superhydrophobic surfaces[J]. Physics of Fluids,2009,21(8):085103-085103-9. [101] GOGTE S,VOROBIEFF P,TRUESDELL R,et al. Effective slip on textured superhydrophobic surfaces[J]. Physics of Fluids,2005,17(5):1441-1457. [102] DONG H. Extraordinary drag-reducing effect of a superhydrophobic coating on a macroscopic model ship at high speed[J]. J. Mater. Chem. A,2013,1(19):5886-5891. [103] KIM K,DONG R K,LEE K S. Local frosting behavior of a plated-fin and tube heat exchanger according to the refrigerant flow direction and surface treatment[J]. International Journal of Heat & Mass Transfer,2013,64:751-758. [104] RUAN Min,LI Wen,WANG Baoshan,et al. Preparation and anti-icing behavior of superhydrophobic surfaces on aluminum alloy substrates[J]. Langmuir,2013,29(27):8482-8491. [105] PIOTR T,MARIE L M,DAVID Q. Delayed freezing on water repellent materials[J]. Langmuir the Acs Journal of Surfaces & Colloids,2009,25(25):7214-7216. [106] LIDIYA M,BENJAMIN H,VAIBHAV B,et al. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets[J]. ACS Nano,2010,4(12):7699-707. [107] KULINICH S A,FARHADI S,NOSE K,et al. Superhydrophobic surfaces:are they really ice-repellent?[J]. Langmuir the Acs Journal of Surfaces & Colloids,2011,27(1):25-29. [108] FARHADI S, FARZANEH M, KULINICH S A. Anti-icing performance of superhydrophobic surfaces[J]. Applied Surface Science,2011,257(14):6264-6269. [109] KULINICH S A,FARZANEH M. How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces[J]. Langmuir, 2009,25(16):8854-8856. [110] KULINICH S A, FARZANEH M. Ice adhesion on super-hydrophobic surfaces[J]. Applied Surface Science,2009,255(18):8153-8157. [111] CAO L, JONES A K, SIKKA V K, et al. Anti-icing superhydrophobic coatings[J]. Langmuir, 2009, 25(21):12444-12448. [112] LI Jian,GONG Yiyu,LI Yong,et al. Inhibiting Ice Accumulation on conductors by using sheath treated with super-hydrophobic surfaces[J]. High Voltage Engineering,2013(10):2500-2505. [113] TARQUINI S,ANTONINI C,AMIRFAZLI A,et al. Investigation of ice shedding properties of superhydrophobic coatings on helicopter blades[J]. Cold Regions Science & Technology,2014,100(3):50-58. [114] MALSHE A,RAJURKAR K,SAMANT A,et al. Bio-inspired functional surfaces for advanced applications[J]. CIRP Annals-Manufacturing Technology,2013,62(2):607-628. [115] BALL P. Engineering Shark skin and other solutions[J]. Nature, 1999,400(6744):507-509. [116] ANTONINI C,INNOCENTI M,HORN T,et al. Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems[J]. Cold Regions Science & Technology,2011,67(s1/2):58-67. [117] LIU T,YIN Y,CHEN S,et al. Super-hydrophobic surfaces improve corrosion resistance of copper in seawater[J]. Electrochimica Acta, 2007,52(11):3709-3713. [118] ZHANG F,ZHAO L,CHEN H,et al. Corrosion resistance of superhydrophobic layered double hydroxide films on aluminum[J]. Angewandte Chemie International Edition, 2008, 47(13):2466-2469. [119] ZHANG F, CHEN S, DONG L, et al. Preparation of superhydrophobic films on titanium as effective corrosion barriers[J]. Applied Surface Science,2011,257(7):2587-2591. [120] RAO A V,LATTHE S S,MAHADIK S A,et al. Mechanically stable and corrosion resistant superhydrophobic sol-gel coatings on copper substrate[J]. Applied Surface Science,2011,257(13):5772-5776. [121] 康志新,郭明杰. 热氧化法制备超疏水Ti表面及其耐腐蚀性[J]. 金属学报,2013,5:018. [122] CRICK C R,GIBBINS J A,PARKIN I P. Superhydrophobic polymer-coated copper-mesh; membranes for highly efficient oil-water separation[J]. Journal of Materials Chemistry A,2013,1(19):5943-5948. [123] LEE C H,JOHNSON N,DRELICH J,et al. The performance of superhydrophobic and superoleophilic carbon nanotube meshes in water-oil filtration[J]. Carbon,2011,49(2):669-676. [124] 周明,郑傲然,杨加宏. 复制模塑法制备超疏水表面及其应用[J]. 物理化学学报,2007,23(8):1296-1300. [125] PARK Y B,IM H,IM M,et al. Self-cleaning effect of highly water-repellent microshell structures for solar cell applications[J]. Journal of Materials Chemistry,2011,21(3):633-636. |
[1] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[2] | 孙旭东, 赵玉莹, 李诗睿, 王琦, 李晓健, 张博. 我国地方性氢能发展政策的文本量化分析[J]. 化工进展, 2023, 42(7): 3478-3488. |
[3] | 徐国彬, 刘洪豪, 李洁, 郭家奇, 王琪. ZnO量子点水性喷墨荧光墨水制备及性能[J]. 化工进展, 2023, 42(6): 3114-3122. |
[4] | 金涌, 程易, 白丁荣, 张晨曦, 魏飞. 中国流态化技术研发史略[J]. 化工进展, 2023, 42(6): 2761-2780. |
[5] | 陈怡欣, 甄摇摇, 陈瑞浩, 吴继伟, 潘丽美, 姚翀, 罗杰, 卢春山, 丰枫, 王清涛, 张群峰, 李小年. 铂基纳米催化剂的制备及在加氢领域的进展[J]. 化工进展, 2023, 42(6): 2904-2915. |
[6] | 李建雄, 耿爽, 胡树坚, 周明. 脂质体递送系统功能结构设计与应用研究进展[J]. 化工进展, 2023, 42(4): 2003-2012. |
[7] | 司银芳, 胡语婕, 张凡, 董浩, 佘跃惠. 生物合成氧化锌纳米颗粒材料及其抗菌应用[J]. 化工进展, 2023, 42(4): 2013-2023. |
[8] | 吴恒, 李银龙, 晏刚, 熊通, 张浩, 陶骙. 蒸气压缩制冷/热泵系统中的气液分离技术[J]. 化工进展, 2023, 42(3): 1129-1142. |
[9] | 陈邦富, 欧阳平, 李宇涵, 段有雨, 董帆. ZnSn(OH)6 基纳米材料在环境光催化中的应用[J]. 化工进展, 2023, 42(2): 756-764. |
[10] | 张育新, 王灿, 舒文祥. 二氧化碳的还原及其利用研究进展[J]. 化工进展, 2023, 42(2): 944-956. |
[11] | 关永昕, 周强, 陈立义, 李慧, 刘小楠. 有机硅、有机氟低表面能防污涂料研究进展[J]. 化工进展, 2023, 42(10): 5286-5298. |
[12] | 杨凯璐, 陈明星, 王新亚, 张威, 肖长发. 染料废水处理用纳滤膜制备及改性研究进展[J]. 化工进展, 2023, 42(10): 5470-5486. |
[13] | 潘月磊, 程旭东, 闫明远, 何盼, 张和平. 二氧化硅气凝胶及其在保温隔热领域应用进展[J]. 化工进展, 2023, 42(1): 297-309. |
[14] | 付春龙, 王松江, 李国智. 煤气化细渣燃烧技术研究进展[J]. 化工进展, 2022, 41(S1): 516-523. |
[15] | 黄岳峰, 马丽莎, 张莉莉, 王志国. 木质纤维素复合生物质薄膜材料的功能化应用研究进展[J]. 化工进展, 2022, 41(9): 4840-4854. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |