[1] 孙绍晖, 孙培勤, 常春, 等. 我国生物质能源现代化应用前景展望(四)[J]. 中外能源, 2014, 19(9): 26-33. [2] 孙培勤, 孙绍晖, 常春, 等. 生物基燃料技术经济评估[M]. 北京: 中国石化出版社, 2015. [3] 孙绍晖, 孙培勤, 常春, 等. 我国生物质能源现代化应用前景展望(三)[J]. 中外能源, 2014, 19(8): 13-24. [4] 谭天伟, 俞建良, 张栩. 生物炼制技术研究新进展[J]. 化工进展, 2011, 30(1): 117-125 [5] HUBER G W, CORTRIGHT R D, DUMESIC J A. Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates[J]. Angewandte Chemie International Edition, 2004, 43(12): 1549 -1551. [6] ALONSO D M, BOND J Q, DUMESIC J A. Catalytic conversion of biomass to biofuels[J]. Green Chemistry, 2010, 9(12): 1493-1513. [7] CLIMENT M G, CORMA A, IBORRA S. Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels[J]. Green Chemistry, 2014, 2(16): 516-547. [8] NAKAGAWA Y, LIU S, TAMURA M, et al. Catalytic total hydrodeoxygenation of biomass-derived polyfunctionalized substrates to alkanes[J]. ChemSusChem, 2015, 8(7): 1114-1132. [9] HUBER G W, CHHEDA J N, BARRETT C J, et al. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates[J]. Science, 200, 308(5727): 1446-1450. [10] WEST R M, LIU Z Y, MAXIMILIAN PETER, et al. Liquid alkanes with targeted molecular weights from biomass-derived carbohydrates[J]. ChemSusChem, 2008, 1(5): 417-424. [11] 黄晓明, 章青, 王铁军. MgO/NaY催化糠醛和丙酮合成航空燃料中间体的性能研究[J]. 燃料化学学报, 2012, 40(8): 973-978. [12] FABA L, DÍAZ E, ORDÓÑEZ S. Improvement on the catalytic performance of Mg-Zr mixed oxides for furfural-acetone aldol condensation by supporting on mesoporous carbons[J]. ChemSusChem, 2013, 6(3): 463 - 473. [13] YANG J F, LI N, LI G Y, et al. Solvent-free synthesis of C10 and C11 branched alkanes from furfural and methyl isobutyl ketone[J]. ChemSusChem, 2013, 6(7): 1149-1152. [14] YANG J F, LI N, LI G Y, et al. Synthesis of diesel and jet fuel range alkanes with furfural and ketones from lignocellulose under solvent free conditions[J]. Green Chemistry, 2014, 16: 4879-4884. [15] ABEYSEKERA A, MAHATANTILA C, SAJEEVANI J. Synthesis of 7-functionalized γ-lactones from furfural[J]. Journal of the National Science Foundation of Sri Lanka, 2008, 36(3): 185-190. [16] HRONEC M, FULAJTAROVÁ K. Selective transformation of furfural to cyclopentanone[J]. Catalysis Communications, 2012, 24(26): 100-104. [17] YANG J F, LI N, LI G Y, et al. Synthesis of renewable high-density fuels using cyclopentanone derived from lignocellulose[J].Chemical Communications, 2014, 50(20): 2572-2574. [18] SHEN W Q, TOMPSETT G A, et al. Vapor phase butanal self-condensation over unsupported and supported alkaline earth metal oxides[J]. Journal of Catalysis, 2012, 286: 248-259. [19] MEYLEMANS H A, QUINTANA R L, GOLDSMITH B R, et al. Solvent-free conversion of linalool to methylcyclopentadiene dimers: a route to renewable high-density fuels[J]. ChemSusChem, 2011, 4(4): 465-469. [20] CORMA A, TORRE O, RENZ M, et al. Production of high-quality diesel from biomass waste products[J]. Angewandte Chemie, 2011, 50(10): 2375-2378. [21] CORMA M, TORRE O, RENZ M. Production of high quality diesel from cellulose and hemicellulose by the Sylvan process: catalysts and process variables[J]. Energy and Environmental Science, 2012, 5(4): 6328-6344. [22] LI G Y, LI N, YANG J F, et al. Synthesis of renewable diesel with the 2-methylfuran, butanal and acetone derived from lignocellulose[J]. Bioresource Technology, 2013, 134: 66-72. [23] LI G Y, LI N, WANG Z Q, ea al. Synthesis of high-quality diesel with furfural and 2-methylfuran from hemicellulose[J].ChemSusChem, 2012, 5(10): 1958-1966. [24] 孙绍晖, 李光, 孙培勤, 等. 一种由糠醇制备C5-C25烷烃的方法: 102559235A[P]. 2012-07-11. [25] 李光. 糠醇增长碳链反应规律研究[D]. 河南: 郑州大学, 2013. [26] HUANG Y B, YANG Z, DAI J J, et al. Production of high quality fuels from lignocellulose-derived chemicals: a convenient C-C bond formation of furfural, 5-methylfurfural and aromatic aldehyde[J]. RSC Advances, 2012, 2(30): 11211-11214. [27] LIU D J, CHEN E Y. Diesel and alkane fuels from biomass by organocatalysis and metal-acid tandem catalysis[J]. ChemSusChem, 2013, 6(12): 2236-2239. [28] BOND J Q, ALONSO D M, WANG D, et al. Integrated catalytic conversion of r-valerolactone to liquid alkenes for transportation fuels[J]. Science, 2010, 327: 1110-1113. [29] XIN J Y, YAN D X, OLUBUNMI A, et al. Conversion of biomass derived valerolactone into high octane number gasoline with an ionic liquid[J]. Green Chemstry, 2015, 17(2): 1065-1070. [30] MASCAL M, DUTTA S, GANDARIAS I. Hydrodeoxygenation of the angelica lactone dimer, a celluloseBased feedstock: simple, high-yield synthesis of branched C7-C10 gasoline-like hydrocarbons[J]. Angewandte Chemie, 2014, 53(3): 1854-1857. [31] XIN J Y, ZHANG S J, YAN D X, et al. Formation of C-C bonds for the production of bio-alkanes under mild conditions[J]. Green Chemstry, 2014, 16(7): 3589-3595. [32] AFFILIATED K M, KIM S, YUM T, et al. Conversion of levulinic acid to 2-butanone by acetoacetate decarboxylase from Clostridium acetobutylicum[J].Applied Microbiology & Biotechnology, 2013, 97(12): 5627-5634. [33] SHYLESH S, SREEKUMAR S, Gomes J, et al. Catalytic upgrading of biomass-derived methyl ketones to liquid transportation fuel precursors by an organocatalytic approach[J]. Angewandte Chemie International Edition, 2015, 54: 4673-4677. [34] SACIA E R, BALAKRISHNAN M, DEANER M H, et al. Highly selective condensation of biomass-derived methyl ketones as a source of aviation fuel[J]. ChemSusChem, 2015, 8(10): 1726-1736. [35] XING R, SUBRAHMANYAM A V, OLCAY H, et al. Production of jet and diesel fuel range alkanes from waste hemicellulose-derived aqueous solutions[J]. Green Chemistry, 2010, 12(11): 1933-1946. [36] OLCAY H, SUBRAHMANYAM A V, Xing R, et al. Production of renewable petroleum refinery diesel and jet fuel feedstocks from hemicellulose sugar streams[J]. Energy and Environmental Science, 2013, 6(1): 205-216. [37] XIA Q N, CUAN Q, LIU X H, et al. Pd/NbOPO4 Multifunctional catalyst for the direct production of liquid alkanes from aldol adducts of furans[J]. Angewandte Chemie, 2014, 126(37): 9913 -9918. [38] WAIDMANN C R, PIERPONT A W, BATISTA E R, et al. Functional group dependence of the acid catalyzed ring opening of biomass derived furan rings: an experimental and theoretical study[J]. Catalysis Science & Technology, 2013, 3(1): 106-115. [39] SUTTON A D, WALDIE F D, WU R L, et al. The hydrodeoxygenation of bioderived furans into alkanes[J]. Nature Chemistry, 2013, 5(5): 428-432. [40] LIU D J, CHEN E Y X. Integrated catalytic process for biomass conversion and upgrading to C12 furoin and alkane fuel[J]. ACS Catalysis, 2014, 4(5): 1302-1310. [41] KOSO S, FURIKADO I, SHIMAO A, et al. Chemoselective hydrogenolysis of tetrahydrofurfuryl alcohol to 1, 5-pentanediol[J]. Chemical Communications, 2009, 15: 2035-2037. [42] XU W J, XIA Q N, ZHANG Y, et al. Effective production of octane from biomass derivatives under mild conditions[J]. ChemSusChem, 2011, 4(12): 1758-1761. [43] WEGENHART B L, YANG L N, KWAN S C, et al. From furfural to fuel: synthesis of furoins by organocatalysis and their hydrodeoxygenation by cascade catalysis[J].ChemSusChem, 2014, 7(9): 2742-2747. [44] LI G Y, LI N, YANG J F, et al. Synthesis of renewable diesel range alkanes by hydrodeoxygenation of furans over Ni/Hβ under mild conditions[J].Green Chemistry, 2014, 16: 594-599. [45] LI S S, LI N, LI G Y, et al. Synthesis of diesel range alkanes with 2-methylfuran and mesityl oxide from lignocellulose[J]. Catalysis Today, 2014, 234(1): 91-99. [46] CHATTERJEE M, MATSUSHIMA K, IKUSHIMA K, et al. Production of linear alkaneviahydrogenative ring opening of a furfural-derived compound in supercritical carbon dioxide[J]. Green Chemstry, 2010, 12(5): 779-782. [47] LUSKA K L, JULIS J, STAVITSKI E, et al. Bifunctional nanoparticle-SILP catalysts (NPs@SILP) for the selective deoxygenation of biomass substrates[J]. Chemical Science, 2014, 12: 4895-4905. [48] WEN C, BARROW E, SIMPERS J H, et al. One-step production of long-chain hydrocarbons from waste-biomass-derived chemicals using bi-functional heterogeneous catalysts[J]. Physical Chemistry Chemical Physics, 2014, 16(7): 3047-3054. [49] FABA L, DAZ E, ORDÇEZ S, et al. One-pot aldol condensation and hydrodeoxygenation of biomass-derived carbonyl compounds for biodiesel synthesis[J]. ChemSusChem, 2014, 7(10): 2816-2820. |