[1] AKIYAMA K,MATSUMOTO S,MIYASAKA A,et al. An air-breathing single cell small proton exchange membrane fuel cell system with AB5-type metal hydride and an ultra-low voltage input boost converter[J]. Journal of Power Sources,2009,186(1):37-44. [2] CHUN D,KIM D,WILLIAMSON Z R,et al. Investigation of fin based oxygen supply modules on the performance of air-breathing polymer electrolyte membrane fuel cells[J]. Applied Thermal Engineering,2013,50(1):293-301. [3] YOU Zhiyu,XU Tao,LIU Zhixiang,et al. Study on air-cooled self-humidifying PEMFC control method based on segmented predict negative feedback control[J]. Electrochim Acta,2014,132:389-396. [4] YUAN D,LIU Z L,TAY S W,et al. An amphiphilic-like fluoroalkyl modified SiO2 nanoparticle@Nafion proton exchange membrane with excellent fuel cell performance[J]. Chem. Commun.,2013,49(83):9639-9641. [5] LI J,TANG H,WANG Z,et al. Microstructure evolution of Nafion/silica membrane under humidity conditions[J]. J. Power Sources,2013,234:333-339. [6] WANG L,ADVANI S G,PRASAD A K. PBI/Nafion/SiO2 hybrid membrane for high-temperature low-humidityfuel cell applications[J]. Electrochim Acta,2013,105:530-534. [7] SENTHIL VELAN V,VELAYUTHAM G,HEBALKAR N,et al. Effect of SiO2 additives on the PEM fuel cell electrode performance[J]. Int. J. Hydrogen Energ.,2011,36(22):14815-14822. [8] HAN W,YEUNG K L. Confined PFSA-zeolite composite membrane for self-humidifying fuel cell[J]. Chem. Commun. (Camb),2011, 47(28):8085-8087. [9] HEO P,SHEN Y,KOJIMA K,et al. Fe0.4Ta0.5P2O7-based composite membrane for high-temperature, low-humidity proton exchange membrane fuel cells[J]. Electrochimica Acta,2014,128:287-291. [10] HERRERO M,MARTOS A M,VAREZ A,et al. Synthesis and characterization of polysulfone/layered double hydroxides nanocomposite membranes for fuelcell application[J]. International Journal of Hydrogen Energy,2014,39(8):4016-4022. [11] WANG J,ZHANG Z,YUE X,et al. Independent control of water retention and acid-base pairing through double-shelled microcapsules to confer membranes with enhanced proton conduction under low humidity[J]. J. Mater. Chem. A,2013,1(6):2267. [12] ZHANG H,MA C,WANG J,et al. Enhancement of proton conductivity of polymer electrolyte membrane enabled by sulfonated nanotubes[J]. Int. J. Hydrogen Energ.,2014,39(2):974-986. [13] CHOUN M,CHUNG S,JEON H,et al. Atomic-layer-deposited TiO2 on cathode gas diffusion layer for low humidity operation in hydrogen fuel cells[J]. Electrochem. Commun.,2012,24:108-111. [14] INOUE N,UCHIDA M,WATANABE M,et al. SiO2-containing catalyst layers for PEFCs operating under low humidity[J]. Electrochem. Commun.,2012,16(1):100-102. [15] KITAHARA T,NAKAJIMA H,INAMOTO M,et al. Novel hydrophilic and hydrophobic double microporous layer coated gas diffusion layer to enhance performance of polymer electrolyte fuel cells under both low and high humidity[J]. J. Power Sources,2013, 234:129-138. [16] LIANG H,ZHENG L,LIAO S. Self-humidifying membrane electrode assembly prepared by adding PVA as hygroscopic agent in anode catalyst layer[J]. Int. J. Hydrogen Energ.,2012,37(17):12860-12867. [17] LIANG H,DANG D,XIONG W, et al. High-performance self-humidifying membrane electrode assembly prepared by simultaneously adding inorganic and organic hygroscopic materials to the anode catalyst layer[J]. J. Power Sources,2013,241:367-372. [18] HUANG R H,CHIU T W,LIN T J,et al. Improvement of proton exchange membrane fuel cells performance by coating hygroscopic zinc oxide on the anodic catalyst layer[J]. J. Power Sources,2013, 227:229-236. [19] EASTCOTT J I,EASTON E B. Sulfonated silica-based fuel cell electrode structures for low humidity applications[J]. J. Power Sources,2014,245:487-494. [20] ANTOLINI E. Composite materials:an emerging class of fuel cell catalyst supports[J]. Applied Catalysis B(Environmental),2010,100(3-4):413-426. [21] POH C K,TIAN Z,Bussayajarn N,et al. Performance enhancement of air-breathing proton exchange membrane fuel cell through utilization of an effective self-humidifying platinum-carbon catalyst[J]. Journal of Power Sources,2010,195(24):8044-8051. [22] LIM C,WANG C Y. Effects of hydrophobic polymer content in GDL on power performance of a PEM fuel cell[J]. Electrochimica Acta, 2004,49(24):4149-4156. [23] ANDERSON R,BLANCO M,BI X,et al. Anode water removal and cathode gas diffusion layer flooding in a proton exchange membrane fuel cell[J]. Int. J. Hydrogen Energ.,2012,37(21):16093-16103. [24] ALINK R,HAUßMANN J,MARKÖTTER H,et al. The influence of porous transport layer modifications on the water management in polymer electrolyte membrane fuel cells[J]. J. Power Sources,2013, 233:358-368. [25] RAMYA K,SREENIVAS J,DHATHATHREYAN K S. Study of a porous membrane humidification method in polymer electrolyte fuel cells[J]. Int. J. Hydrogen Energ.,2011,36(22):14866-14872. [26] PARK S,LEE J-W,POPOV B N. A review of gas diffusion layer in PEM fuel cells:materials and designs[J]. International Journal of Hydrogen Energy,2012,37(7):5850-5865. [27] SHIMPALEE S,BEUSCHER U,VAN ZEE J W. Analysis of GDL flooding effects on PEMFC performance[J]. Electrochim Acta,2007, 52(24):6748-6754. [28] SADEGHIFAR H, DJILALI N, BAHRAMI M. Effect of polytetrafluoroethylene (PTFE) and micro porous layer (MPL) on thermal conductivity of fuel cell gas diffusion layers:modeling and experiments[J]. Journal of Power Sources,2014,248:632-641. [29] PARK G G,SOHN Y J,YANG T H,et al. Effect of PTFE contents in the gas diffusion media on the performance of PEMFC[J]. J. Power Sources,2004,131(1-2):182-187. [30] PARK S,LEE J W,POPOV B N. Effect of PTFE content in microporous layer on water management in PEM fuel cells[J]. J. Power Sources,2008,177(2):457-463. [31] WANG E D,SHI P F,DU C Y. A novel self-humidifying membrane electrode assembly with water transfer region for proton exchange membrane fuel cells[J]. J. Power Sources,2008,175(1):183-188. [32] ZHANG H,LIU Z,GAO S,et al. A new cathode structure for air-breathing DMFCs operated with pure methanol[J]. Int. J. Hydrogen Energ.,2014,39(25):13751-13756. [33] WEILAND M,WAGNER S,HAHN R,et al. Design and evaluation of a passive self-breathing micro fuel cell for autonomous portable applications[J]. Int. J. Hydrogen Energ.,2013,38(1):440-446. [34] BUSSAYAJARN N,MING H,HOONG K K,et al. Planar air breathing PEMFC with self-humidifying MEA and open cathode geometry design for portable applications[J]. International Journal of Hydrogen Energy,2009,34(18):7761-7767. [35] HENRIQUES T,CÉSAR B,BRANCO P J C. Increasing the efficiency of a portable PEM fuel cell by altering the cathode channel geometry:a numerical and experimental study[J]. Applied Energy, 2010,87(4):1400-1409. [36] MA H K,HUANG S H,KUO Y Z. A novel ribbed cathode polar plate design in piezoelectric proton exchange membrane fuel cells[J]. Journal of Power Sources,2008,185(2):1154-1161. [37] MASON T J,MILLICHAMP J,NEVILLE T P,et al. A study of the effect of water management and electrode flooding on the dimensional change of polymer electrolyte fuel cells[J]. J. Power Sources,2013,242:70-77. [38] LI A,CHAN S H. Understanding the role of cathode structure and property on water management and electrochemical performance of a PEM fuel cell[J]. Int. J. Hydrogen Energ.,2013,38(27):11988-11995. [39] FABIAN T,O'HAYRE R,LITSTER S,et al. Passive water management at the cathode of a planar air-breathing proton exchange membrane fuel cell[J]. Journal of Power Sources,2010,195(10):3201-3206. [40] FABIAN T,O'HAYRE R,LITSTER S,et al. Active water management at the cathode of a planar air-breathing polymer electrolyte membrane fuel cell using an electroosmotic pump[J]. Journal of Power Sources,2010,195(11):3640-3644. [41] KIM J H,LEE J Y,CHOI K H,et al. Development of planar, air-breathing,proton exchange membrane fuel cell systems using stabilized sodium borohydride solution[J]. Journal of Power Sources, 2008,185(2):881-885. [42] FERNÁNDEZ-MORENO J,GUELBENZU G,MARTÍN A J,et al. A portable system powered with hydrogen and one single air-breathing PEM fuel cell[J]. Applied Energy,2013,109:60-66. [43] SHIH N C,LIN C L,CHANG C C,et al. Experimental tests of an air-cooling hydrogen fuel cell hybrid electric scooter[J]. Int. J. Hydrogen Energ.,2013,38(25):11144-11148. |