[1] Smith D K. Supramolecular gels:Building bridges[J]. Nature Chemistry, 2010, 2:162-163. [2] Vintiloiu A, Leroux J. Organogels and their use in drug delivery—A review[J]. Journal of Controlled Release, 2008, 125(3):179-192. [3] Wang C, Chen Q, Sun F, et al. Multistimuli responsive organogels based on a new gelator featuring tetrathiafulvalene and azobenzene groups:Reversible tuning of the gel-sol transition by redox reactions and light irradiation[J]. J. Am. Chem. Soc., 2010, 132(9):3092-3096. [4] Zhao Y L, Stoddart J F. Azobenzene-based light-responsive hydrogel system[J]. Langmuir, 2009, 25(15):8442-8446. [5] Wu Y P, Wu S, Zou G, et al. Solvent effects on structure, photoresponse and speed of gelation of a dicholesterol-linked azobenzene organogel[J]. Soft Matter., 2011, 7(19):9177-9183. [6] Yamamoto T, Yoshida M. Viscoelastic and photoresponsive properties of microparticle/liquid-crystal composite gels:Tunable mechanical strength along with rapid-recovery nature and photochemical surface healing using an azobenzene dopant[J]. Langmuir, 2012, 28(22):8463-8469. [7] Fabbri F, Garrot D, Lahlil K, et al. Evidence of two distinct mechanisms driving photoinduced matter motion in thin films containing azobenzene derivatives[J]. The Journal of Physical Chemistry B, 2011, 115(6):1363-1367. [8] Buerklea L E, Rowan S J. Supramolecular gels formed from multi-component low molecular weight species[J]. Chem. Soc. Rev., 2012, 41:6089-6102. [9] Liu Z X, Feng Y, Yan Z C, et al. Multistimuli responsive dendritic organogels based on azobenzene-containing poly(aryl ether) dendron[J]. Chem. Mater., 2012, 24(19):3751-3757. [10] Lee S, Oh S, Lee J, et al. Stimulus-responsive azobenzene supramolecules:Fibers, gels, and hollow spheres[J]. Langmuir, 2013, 29(19):5869-5877. [11] Wu Y, Wu S, Tian X, et al. Photoinduced reversible gel-sol transitions of dicholesterol-linked azobenzene derivatives through breaking and reforming of van der waals interactions[J]. Soft Matter., 2011, 7:716-721. [12] Wang J, Yang G, Jiang H, et al. Photo-responsive cholesterol-substituted diacetylenic organogels:Morphology tuning, photo-switching and photo-polymerization[J]. Soft Matter., 2013, 9:9785-9791. [13] Xu X D, Zhang J, Chen L J, et al. Large-scale honeycomb microstructures constructed by platinum-acetylide gelators through supramolecular self-assembly[J]. Chem. Eur. J., 2012, 18:1659- 1667. [14] Yang R M, Peng S H, Hughes T C. Multistimuli responsive organogels based on a reactive azobenzene gelator[J]. Soft Matter., 2014, 10:2188-2196. [15] Jiao T F, Wang Y J, Gao F Q, et al. Photoresponsive organogel and organized nanostructures of cholesterol imide derivatives with azobenzene substituent groups[J]. Progress in Natural Science- Materials International, 2012, 22(1):64-70. [16] Delbecq F, Kaneko N, Endo H, et al. Solvation effects with a photoresponsive two-component 12-hydroxystearic acid-azobenzene additive organogel[J]. J. Colloid. Interface. Sci., 2012, 384(1):94-98. [17] Clemente M J, Tejedor R M, Romero P, et al. Maltose-based gelators having azobenzene as light-sensitive unit[J]. RSC. Adv., 2012, 2(30):11419-11431. [18] 余丽丽, 姚琳, 杨黎燕. 光响应型药物释放体系(Pr-DDS)的研究进展[J]. 化工进展, 2012, 31(5):1065-1070. [19] 廖列文, 龚涛, 周静, 等. DMAEMA系列智能水凝胶的研究进展[J]. 化工进展, 2011, 30(2):345-352. [20] Huang Y, Qiu Z, Xu Y, et al. Supramolecular hydrogels based on short peptides linked with conformational switch[J]. Organic & Biomolecular Chemistry, 2011, 9(7):2149-2155. [21] Velema W A, Stuart M C A, Szymanski W, et al. Light-triggered self-assembly of a dichromonyl compound in water[J]. Chemical Communications, 2013, 49(44):5001-5003. [22] Ogawa Y, Yoshiyama C, Kitaoka T. Helical assembly of azobenzene-conjugated carbohydrate hydrogelators with specific affinity for lectins[J]. Langmuir, 2012, 28(9):4404-4412. [23] Peng S, Guo Q, Hughes T C, et al. Reversible photorheological lyotropic liquid crystals[J]. Langmuir, 2014, 30(3):866-872. [24] Peng S, Guo Q, Hartley P G, et al. Azobenzene moiety variation directing self-assembly and photoresponsive behavior of azo-surfactants[J]. Journal of Materials Chemistry C, 2014, 2:8303-8312. [25] Yang R M, Peng S H, Wan W, et al. Azobenzene based multistimuli responsive supramolecular hydrogels[J]. Journal of Materials Chemistry C, 2014, 2:9122-9131. [26] Yu G C, Han C Y, Zhang Z B, et al. Pillar[6]arene-based photoresponsive host-guest complexation[J]. J. Am. Chem. Soc., 2012, 134(20):8711-8717. [27] Chen W D, Gong W T, Ye J W, et al. Rational design of multistimuli responsive organogels by alternation of hydrogen-bonding and amphiphilic properties[J]. RSC. Adv., 2012, 2(3):809-811. [28] Haino T, Hirai Y, Ikeda T, et al. Photoresponsive two-component organogelators based on trisphenylisoxazolylbenzene[J]. Org. Biomol. Chem., 2013, 11(25):4164-4170. [29] Peng K, Tomatsu I, Kros A. Light controlled protein release from a supramolecular hydrogel[J]. Chemical Communications, 2010, 46(23):4094-4096. [30] Li X, Yang Y, Qin Y, et al. Vesicles and nanofibers with krafft transition from cationic surfactant-divalent azobenzene dye salt-free complex[J]. Journal of Dispersion Science and Technology, 2011, 32:465-469. [31] Lu Y, Zhou T, Fan Q, et al. Light-responsive viscoelastic fluids based on anionic wormlike micelles[J]. Journal of Colloid and Interface Science, 2013, 412:107-111. [32] Jiao T, Wang Y, Gao F, et al. Photoresponsive organogel and organized nanostructures of cholesterol imide derivatives with azobenzene substituent groups[J]. Prog. Nat. Sci., 2012, 22(1):64-70. [33] Guo H, Jiao T, Shen X, et al. Preparation and characterization of binaryorganogels via some azobenzene amino derivatives and different fatty acids:Self-assembly and nanostructures[J]. J. Spectrosc., 2014. Article ID 758765. DOI:org/10.1155/2014/758765. [34] Kang T S, Ishiba K, Morikawa M, et al. Self-assembly of azobenzene bilayer membranes in binary ionic liquid-water nanostructured media[J]. Langmuir, 2014, 30(9):2376-2384. [35] 高超, 杨瑜珠, 张广播, 等. 光响应性有机-无机杂化分子印迹聚合物的制备及表征[J]. 高等学校化学学报, 2012, 33:2801-2808. [36] Ide T, Ozama Y, Matsui K. Photochemistry of azobenzene in sol-gel systems[J]. J. Non-Cryst. Solids, 2011, 357(1):100-104. [37] Gao C, Ma X A, Zhang Q O, et al. A light-powered stretch-contraction supramolecular system based on cobalt coordinated[1]rotaxane[J]. Org. Biomol. Chem., 2011, 9(4):1126-1132. |