Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (3): 1517-1526.DOI: 10.16085/j.issn.1000-6613.2020-0805
• Materials science and technology • Previous Articles Next Articles
WU En’hui1,2(), LI Jun1,2, HOU Jing1,2, HUANG Ping1,2, XU Zhong1,2, JIANG Yan1,2, LUO Binyang1
Received:
2020-05-12
Online:
2021-03-17
Published:
2021-03-05
Contact:
WU En’hui
吴恩辉1,2(), 李军1,2, 侯静1,2, 黄平1,2, 徐众1,2, 蒋燕1,2, 罗彬杨1
通讯作者:
吴恩辉
作者简介:
吴恩辉(1984—),男,博士,副教授,研究方向为钒钛磁铁矿综合利用及钒钛功能材料。E-mail:基金资助:
CLC Number:
WU En’hui, LI Jun, HOU Jing, HUANG Ping, XU Zhong, JIANG Yan, LUO Binyang. Preparation and properties of graphite/TinO2n-1 composites[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1517-1526.
吴恩辉, 李军, 侯静, 黄平, 徐众, 蒋燕, 罗彬杨. 石墨/TinO2n-1复合材料的制备及性能[J]. 化工进展, 2021, 40(3): 1517-1526.
还原温度/℃ | 石墨∶TiO2 | 还原时间/min | 物相组成 | k/min-1 | R2 |
---|---|---|---|---|---|
还原样品 | |||||
1150 | 3∶10 | 20 | 金红石型TiO2 | 0.0060±0.0002 | 0.99433 |
1200 | 3∶10 | 20 | 金红石型TiO2+Ti9O17 | 0.0042±0.0002 | 0.98848 |
1250 | 3∶10 | 20 | Ti9O17 | 0.0036±0.0001 | 0.99152 |
1300 | 3∶10 | 20 | Ti5O9 | 0.0033±0.0001 | 0.99044 |
1350 | 3∶10 | 20 | Ti4O7 | 0.0047±0.0007 | 0.99804 |
1250 | 1∶10 | 20 | 金红石型TiO2+Ti9O17 | 0.0040±0.0002 | 0.98857 |
1250 | 2∶10 | 20 | 金红石型TiO2+Ti9O17 | 0.0036±0.0001 | 0.98948 |
1250 | 4∶10 | 20 | Ti8O15 | 0.0029±0.0009 | 0.99279 |
1250 | 5∶10 | 20 | Ti6O11 | 0.0035±0.0001 | 0.99096 |
1250 | 3∶10 | 5 | 金红石型TiO2 | 0.0070±0.0001 | 0.99763 |
1250 | 3∶10 | 10 | 金红石型TiO2+Ti9O17 | 0.0041±0.0001 | 0.99448 |
1250 | 3∶10 | 40 | Ti4O7 | 0.0035±0.0001 | 0.98597 |
1250 | 3∶10 | 60 | Ti4O7 | 0.0035±0.0001 | 0.98635 |
锐钛型 TiO2 | 锐钛型TiO2 | 0.0056±0.0005 | 0.96879 | ||
石墨粉 | 石墨 | 0.0019±0.0001 | 0.99823 |
还原温度/℃ | 石墨∶TiO2 | 还原时间/min | 物相组成 | k/min-1 | R2 |
---|---|---|---|---|---|
还原样品 | |||||
1150 | 3∶10 | 20 | 金红石型TiO2 | 0.0060±0.0002 | 0.99433 |
1200 | 3∶10 | 20 | 金红石型TiO2+Ti9O17 | 0.0042±0.0002 | 0.98848 |
1250 | 3∶10 | 20 | Ti9O17 | 0.0036±0.0001 | 0.99152 |
1300 | 3∶10 | 20 | Ti5O9 | 0.0033±0.0001 | 0.99044 |
1350 | 3∶10 | 20 | Ti4O7 | 0.0047±0.0007 | 0.99804 |
1250 | 1∶10 | 20 | 金红石型TiO2+Ti9O17 | 0.0040±0.0002 | 0.98857 |
1250 | 2∶10 | 20 | 金红石型TiO2+Ti9O17 | 0.0036±0.0001 | 0.98948 |
1250 | 4∶10 | 20 | Ti8O15 | 0.0029±0.0009 | 0.99279 |
1250 | 5∶10 | 20 | Ti6O11 | 0.0035±0.0001 | 0.99096 |
1250 | 3∶10 | 5 | 金红石型TiO2 | 0.0070±0.0001 | 0.99763 |
1250 | 3∶10 | 10 | 金红石型TiO2+Ti9O17 | 0.0041±0.0001 | 0.99448 |
1250 | 3∶10 | 40 | Ti4O7 | 0.0035±0.0001 | 0.98597 |
1250 | 3∶10 | 60 | Ti4O7 | 0.0035±0.0001 | 0.98635 |
锐钛型 TiO2 | 锐钛型TiO2 | 0.0056±0.0005 | 0.96879 | ||
石墨粉 | 石墨 | 0.0019±0.0001 | 0.99823 |
1 | FUJISHIMA Akira, HONDA Kenichi. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238: 37–38. |
2 | KUMAR Ashutosh, KHAN Musharib, HE Juhua, et al. Recent developments and challenges in practical application of visible–light–driven TiO2–based heterojunctions for PPCP degradation: a critical review[J]. Water Research, 2020, 170: 115356. |
3 | AWFA Dion, ATEIA Mohamed, FUJII Manabu, et al. Photodegradation of pharmaceuticals and personal care products in water treatment using carbonaceous-TiO2 composites: a critical review of recent literature[J]. Water Research, 2018, 142: 26-45. |
4 | BARBERO Nadia, VIONE Davide. Why dyes should not be used to test the photocatalytic activity of semiconductor oxides[J]. Environmental Science & Technology, 2016, 50(5): 2130-2131. |
5 | DEVI L G, KAVITHA R. A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: role of photogenerated charge carrier dynamics in enhancing the activity[J]. Applied Catalysis B: Environmental, 2013, 140/141: 559-587. |
6 | DO H H, NGUYEN D L, NGUYEN X C, et al. Recent progress in TiO2-based photocatalysts for hydrogen evolution reaction: a review[J]. Arabian Journal of Chemistry, 2020, 13(2): 3653-3671. |
7 | SAVOSKIN M V, YAROSHENKO A P, LAZAREVA N I, et al. Using graphite intercalation compounds for producing exfoliated graphite–amorphous carbon–TiO2 composites[J]. Journal of the Physics and Chemistry of Solids, 2006, 67: 1205-1207. |
8 | JIA Jialin, LI Dong, WAN Jiafeng, et al. Characterization and mechanism analysis of graphite/C-doped TiO2 composite for enhanced photocatalytic performance[J]. Journal of Industrial and Engineering Chemistry, 2015, 33: 162-169. |
9 | JIA Jialin, LI Dong, CHENG Xiuwen, et al. Construction of graphite/TiO2/nickel foam photoelectrode and its enhanced photocatalytic activity[J]. Applied Catalysis A: General, 2016, 525: 128-136. |
10 | LI Dong, JIA Jialin, ZHANG Yuhang, et al. Preparation and characterization of nano-graphite/TiO2 composite photoelectrode for photoelectrocatalytic degradation of hazardous pollutant[J]. Journal of Hazardous Materials, 2016, 315: 1-10. |
11 | WU Yongmei, CHEN Shuai, ZHAO Jie, et al. Mesoporous graphitic carbon nitride and carbon–TiO2 hybrid composite photocatalysts with enhanced photocatalytic activity under visible light irradiation[J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 797-807. |
12 | VAIANO Vincenzo, SACCO Olga, MATARANGOLO Mariantonietta. Photocatalytic degradation of paracetamol under UV irradiation using TiO2-graphite composites[J]. Catalysis Today, 2018, 315: 230-236. |
13 | TOYODA Masahiro, YANO Takashi, TRYBA Beata, et al. Preparation of carbon-coated Magneli phases TinO2n-1 and their photocatalytic activity under visible light[J]. Applied Catalysis B: Environmental, 2009, 88(1/2): 160-164. |
14 | PAGE Y L, STROBEL P. Structural chemistry of the Magnéli phases TinO2n-1, 4≤n≤9: II. Refinements and structural discussion[J]. Journal of Solid State Chemistry, 1982, 44(2): 273-281. |
15 | PAGE Y L, STROBEL P. Structural chemistry of magnéli phases TinO2n-1 (4≤n≤9). I. Cell and structure comparisons[J]. Journal of Solid State Chemistry, 1982, 43(3): 314-319. |
16 | MAREZIO M, DERNIER P D. The crystal structure of Ti4O7, a member of the homologous series TinO2n-1 [J]. Journal of Solid State Chemistry, 1971, 3(3): 340-348. |
17 | TSUMURA Tomoki, HATTORI Yoshiyuki, KANEKO Katsumi, et al. Formation of the Ti4O7 phase through interaction between coated carbon and TiO2[J]. Desalination, 2004, 169(3): 269-275. |
18 | LIU Minghui, ZHAO Ding, ZHAI Weiran, et al. Rapid preparation and properties investigation on TinO2n-1@C core-shell nanoparticles[J]. Journal of Alloys and Compounds, 2020, 816: 152516. |
19 | KIM D S, CHUNG D J, BAE J, et al. Surface engineering of graphite anode material with black TiO2-x for fast chargeable lithium ion battery[J]. Electrochimica Acta, 2017, 258: 336-342. |
20 | QIAN Shuang, MAO Jian. A practical and feasible way to synthesize Magnéli phase conductive nanowires[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(7): 5166-5169. |
21 | LIU Kejia, WANG Yaowu, DI Yuezhong, et al. Preparation of porous Ti2O3via a carbothermal reduction of titanium dioxide[J]. Ceramics International, 2018, 44(1): 1007-1012. |
22 | 陈希来, 李远兵, 谭俊峰,等. 埋炭气氛下碳热、铝热、硅热还原TiO2反应的热力学分析[J]. 硅酸盐通报, 2007, 26(1): 162-167. |
CHEN Xilai, LI Yuanbing, TAN Junfeng, et al. Thermodynamic analysis for reduction of TiO2 by carbon, aluminum and silicon in the presence of N2 and CO[J]. Bulletin of the Chinese Ceramic Society, 2007, 26(1): 162-167. | |
23 | MAO Xian, YUAN Fanglu, ZHOU Anqi, et al. Magnéli phases TinO2n-1 as novel ozonation catalysts for effective mineralization of phenol[J]. Chinese Journal of Chemical Engineering, 2018, 26(9): 1978-1984. |
24 | LI Lu, CHEN Yan, JIAO Shihui, et al. Synthesis, microstructure, and properties of black anatase and B phase TiO2 nanoparticles[J]. Materials & Design, 2016, 100: 235-240. |
25 | WALSH F C, WILLS R G A. The continuing development of Magnéli phase titanium sub-oxides and Ebonex® electrodes[J]. Electrochimica Acta, 2010, 55(22): 6342-6351. |
26 | NOORJAHAN M, REDDY M P, KUMARI V D, et al. Photocatalytic degradation of H-acid over a novel TiO2 thin film fixed bed reactor and in aqueous suspensions[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 156: 179-187. |
27 | ZHANG Jiawei, WANG Sheng, LIU Fusheng, et al. Preparation of defective TiO2-x hollow microspheres for photocatalytic degradation of methylene blue[J]. Acta Physico-Chimica Sinica, 2019, 35(8): 885–895. |
28 | 黄海凤, 贾建明, 卢晗锋, 等. Zr/Ti摩尔比对锶锆钛复合氧化物在可见光下光催化性能的影响[J]. 物理化学学报, 2013, 29(6): 1319-1326. |
HUANG Haifeng, JIA Jianming, LU Hanfeng, et al. Effect of designed Zr/Ti molar ratio on the photocatalytic activity of Sr-Zr-Ti mixed oxide catalysts under visible light[J]. Acta Physico-Chimica Sinica, 2013, 29(6): 1319-1326. | |
29 | ZHAO Xin, ZHANG Xiaojing, ZHAO Bolin, et al. A direct oxygen vacancy essential Z-scheme C@Ti4O7/g-C3N4 heterojunctions for visible-light degradation towards environmental dye pollutants[J]. Applied Surface Science, 2020, 525: 146486. |
30 | MARAGATHA J, JOTHIVENKATACHALAM K, KARUPPUCHAMY S. Synthesis and characterization of visible light-responsive carbon doped Ti4O7 photocatalyst[J]. Journal of Materials Science: Materials in Electronics, 2016, 27: 9233–9239. |
31 | MARAGATHA J, RANI C, RAJENDRAN S, et al. Microwave synthesis of nitrogen doped Ti4O7 for photocatalytic applications[J]. Physica E: Low-dimensional Systems and Nanostructures, 2017, 93: 78-82. |
32 | TOYODA Masahiro, YANO Takashi, TOMOKI Tsumura, et al. Effects of carbon coating on TinO2n-1 for decomposition of iminoctadine triacetate in aqueous solution under visible light[J]. Journal of Advanced Oxidation Technologies, 2006, 9(1): 49-52. |
[1] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[2] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[3] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[4] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[5] | ZHAO Wei, ZHAO Deyin, LI Shihan, LIU Hongda, SUN Jin, GUO Yanqiu. Synthesis and application of triazine drag reducing agent for nature gas pipeline [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 391-399. |
[6] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[7] | ZHANG Jie, WANG Fangfang, XIA Zhonglin, ZHAO Guangjin, MA Shuangchen. Current SF6 emission, emission reduction and future prospects under “carbon peaking and carbon neutrality” [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 447-460. |
[8] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[9] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[10] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[11] | ZHAO Jingchao, TAN Ming. Effect of surfactants on the reduction of industrial saline wastewater by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 529-535. |
[12] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[13] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[14] | SHU Bin, CHEN Jianhong, XIONG Jian, WU Qirong, YU Jiangtao, YANG Ping. Necessity analysis of promoting the development of green methanol under the goal of carbon neutrality [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4471-4478. |
[15] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 177
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 264
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |