1 |
FUJISHIMA Akira, HONDA Kenichi. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238: 37–38.
|
2 |
KUMAR Ashutosh, KHAN Musharib, HE Juhua, et al. Recent developments and challenges in practical application of visible–light–driven TiO2–based heterojunctions for PPCP degradation: a critical review[J]. Water Research, 2020, 170: 115356.
|
3 |
AWFA Dion, ATEIA Mohamed, FUJII Manabu, et al. Photodegradation of pharmaceuticals and personal care products in water treatment using carbonaceous-TiO2 composites: a critical review of recent literature[J]. Water Research, 2018, 142: 26-45.
|
4 |
BARBERO Nadia, VIONE Davide. Why dyes should not be used to test the photocatalytic activity of semiconductor oxides[J]. Environmental Science & Technology, 2016, 50(5): 2130-2131.
|
5 |
DEVI L G, KAVITHA R. A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: role of photogenerated charge carrier dynamics in enhancing the activity[J]. Applied Catalysis B: Environmental, 2013, 140/141: 559-587.
|
6 |
DO H H, NGUYEN D L, NGUYEN X C, et al. Recent progress in TiO2-based photocatalysts for hydrogen evolution reaction: a review[J]. Arabian Journal of Chemistry, 2020, 13(2): 3653-3671.
|
7 |
SAVOSKIN M V, YAROSHENKO A P, LAZAREVA N I, et al. Using graphite intercalation compounds for producing exfoliated graphite–amorphous carbon–TiO2 composites[J]. Journal of the Physics and Chemistry of Solids, 2006, 67: 1205-1207.
|
8 |
JIA Jialin, LI Dong, WAN Jiafeng, et al. Characterization and mechanism analysis of graphite/C-doped TiO2 composite for enhanced photocatalytic performance[J]. Journal of Industrial and Engineering Chemistry, 2015, 33: 162-169.
|
9 |
JIA Jialin, LI Dong, CHENG Xiuwen, et al. Construction of graphite/TiO2/nickel foam photoelectrode and its enhanced photocatalytic activity[J]. Applied Catalysis A: General, 2016, 525: 128-136.
|
10 |
LI Dong, JIA Jialin, ZHANG Yuhang, et al. Preparation and characterization of nano-graphite/TiO2 composite photoelectrode for photoelectrocatalytic degradation of hazardous pollutant[J]. Journal of Hazardous Materials, 2016, 315: 1-10.
|
11 |
WU Yongmei, CHEN Shuai, ZHAO Jie, et al. Mesoporous graphitic carbon nitride and carbon–TiO2 hybrid composite photocatalysts with enhanced photocatalytic activity under visible light irradiation[J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 797-807.
|
12 |
VAIANO Vincenzo, SACCO Olga, MATARANGOLO Mariantonietta. Photocatalytic degradation of paracetamol under UV irradiation using TiO2-graphite composites[J]. Catalysis Today, 2018, 315: 230-236.
|
13 |
TOYODA Masahiro, YANO Takashi, TRYBA Beata, et al. Preparation of carbon-coated Magneli phases TinO2n-1 and their photocatalytic activity under visible light[J]. Applied Catalysis B: Environmental, 2009, 88(1/2): 160-164.
|
14 |
PAGE Y L, STROBEL P. Structural chemistry of the Magnéli phases TinO2n-1, 4≤n≤9: II. Refinements and structural discussion[J]. Journal of Solid State Chemistry, 1982, 44(2): 273-281.
|
15 |
PAGE Y L, STROBEL P. Structural chemistry of magnéli phases TinO2n-1 (4≤n≤9). I. Cell and structure comparisons[J]. Journal of Solid State Chemistry, 1982, 43(3): 314-319.
|
16 |
MAREZIO M, DERNIER P D. The crystal structure of Ti4O7, a member of the homologous series TinO2n-1 [J]. Journal of Solid State Chemistry, 1971, 3(3): 340-348.
|
17 |
TSUMURA Tomoki, HATTORI Yoshiyuki, KANEKO Katsumi, et al. Formation of the Ti4O7 phase through interaction between coated carbon and TiO2[J]. Desalination, 2004, 169(3): 269-275.
|
18 |
LIU Minghui, ZHAO Ding, ZHAI Weiran, et al. Rapid preparation and properties investigation on TinO2n-1@C core-shell nanoparticles[J]. Journal of Alloys and Compounds, 2020, 816: 152516.
|
19 |
KIM D S, CHUNG D J, BAE J, et al. Surface engineering of graphite anode material with black TiO2-x for fast chargeable lithium ion battery[J]. Electrochimica Acta, 2017, 258: 336-342.
|
20 |
QIAN Shuang, MAO Jian. A practical and feasible way to synthesize Magnéli phase conductive nanowires[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(7): 5166-5169.
|
21 |
LIU Kejia, WANG Yaowu, DI Yuezhong, et al. Preparation of porous Ti2O3via a carbothermal reduction of titanium dioxide[J]. Ceramics International, 2018, 44(1): 1007-1012.
|
22 |
陈希来, 李远兵, 谭俊峰,等. 埋炭气氛下碳热、铝热、硅热还原TiO2反应的热力学分析[J]. 硅酸盐通报, 2007, 26(1): 162-167.
|
|
CHEN Xilai, LI Yuanbing, TAN Junfeng, et al. Thermodynamic analysis for reduction of TiO2 by carbon, aluminum and silicon in the presence of N2 and CO[J]. Bulletin of the Chinese Ceramic Society, 2007, 26(1): 162-167.
|
23 |
MAO Xian, YUAN Fanglu, ZHOU Anqi, et al. Magnéli phases TinO2n-1 as novel ozonation catalysts for effective mineralization of phenol[J]. Chinese Journal of Chemical Engineering, 2018, 26(9): 1978-1984.
|
24 |
LI Lu, CHEN Yan, JIAO Shihui, et al. Synthesis, microstructure, and properties of black anatase and B phase TiO2 nanoparticles[J]. Materials & Design, 2016, 100: 235-240.
|
25 |
WALSH F C, WILLS R G A. The continuing development of Magnéli phase titanium sub-oxides and Ebonex® electrodes[J]. Electrochimica Acta, 2010, 55(22): 6342-6351.
|
26 |
NOORJAHAN M, REDDY M P, KUMARI V D, et al. Photocatalytic degradation of H-acid over a novel TiO2 thin film fixed bed reactor and in aqueous suspensions[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 156: 179-187.
|
27 |
ZHANG Jiawei, WANG Sheng, LIU Fusheng, et al. Preparation of defective TiO2-x hollow microspheres for photocatalytic degradation of methylene blue[J]. Acta Physico-Chimica Sinica, 2019, 35(8): 885–895.
|
28 |
黄海凤, 贾建明, 卢晗锋, 等. Zr/Ti摩尔比对锶锆钛复合氧化物在可见光下光催化性能的影响[J]. 物理化学学报, 2013, 29(6): 1319-1326.
|
|
HUANG Haifeng, JIA Jianming, LU Hanfeng, et al. Effect of designed Zr/Ti molar ratio on the photocatalytic activity of Sr-Zr-Ti mixed oxide catalysts under visible light[J]. Acta Physico-Chimica Sinica, 2013, 29(6): 1319-1326.
|
29 |
ZHAO Xin, ZHANG Xiaojing, ZHAO Bolin, et al. A direct oxygen vacancy essential Z-scheme C@Ti4O7/g-C3N4 heterojunctions for visible-light degradation towards environmental dye pollutants[J]. Applied Surface Science, 2020, 525: 146486.
|
30 |
MARAGATHA J, JOTHIVENKATACHALAM K, KARUPPUCHAMY S. Synthesis and characterization of visible light-responsive carbon doped Ti4O7 photocatalyst[J]. Journal of Materials Science: Materials in Electronics, 2016, 27: 9233–9239.
|
31 |
MARAGATHA J, RANI C, RAJENDRAN S, et al. Microwave synthesis of nitrogen doped Ti4O7 for photocatalytic applications[J]. Physica E: Low-dimensional Systems and Nanostructures, 2017, 93: 78-82.
|
32 |
TOYODA Masahiro, YANO Takashi, TOMOKI Tsumura, et al. Effects of carbon coating on TinO2n-1 for decomposition of iminoctadine triacetate in aqueous solution under visible light[J]. Journal of Advanced Oxidation Technologies, 2006, 9(1): 49-52.
|