1 | KUDLAK B, OWCZAREK K, NAMIESNIK J. Selected issues related to the toxicity of ionic liquids and deep eutectic solvents—a review[J]. Environmental Science and Pollution Research International, 2015, 22(16): 11975-11992. | 2 | ROGERS R D, SEDDON K R. Ionic liquids-solvents of the future?[J]. Science, 2003, 302(5646): 792-793. | 3 | WILKES J S. A short history of ionic liquids—from molten salts to neoteric solvents[J]. Green Chemistry, 2002, 4(2): 73-80. | 4 | WELTON T. Room-temperature ionic liquids. Solvents for synthesis and catalysis[J]. Chemical Reviews, 1999, 99(8): 2071-2084. | 5 | MARTINS S, FEDOROV A, AFONSO C A M, et al. Fluorescence of fullerene C70 in ionic liquids[J]. Chemical Physics Letters, 2010, 497(1-3): 43-47. | 6 | MCRARY P D, ROGERS R D. 1-Ethyl-3-methylimidazolium hexafluorophosphate: from ionic liquid prototype to antitype[J]. Chemical Communications (Cambridge, England), 2013, 49(54): 6011-6014. | 7 | EARLE M J, ESPERANCA J M, GILEA M A, et al. The distillation and volatility of ionic liquids[J]. Nature, 2006, 439(7078): 831-834. | 8 | WALDEN P. Molecular weights and electrical conductivity of several fused salts[J]. Bull. Acad. Imper. Sci. (St Petersburg), 1914, 1800: 405-422. | 9 | CREMER T. Ionic liquid bulk and interface properties: electronic interaction, molecular orientation and growth characteristics[M]. New York: Springer Science & Business Media, 2013. | 10 | MESSALI M, MOUSSA Z, ALZAHRANI A Y, et al. Synthesis, characterization and the antimicrobial activity of new eco-friendly ionic liquids[J]. Chemosphere, 2013, 91(11): 1627-1634. | 11 | ABBOTT A P, CAPPER G, DAVIES D L, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chemical Communications, 2003(1): 70-71. | 12 | ABBOTT A P, BOOTHBY D, CAPPER G, et al. Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids[J]. Journal of the American Chemical Society, 2004, 126(29): 9142-9147. | 13 | ABBOTT A P, CAPPER G, DAVIES D, et al. Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains[J]. Chemical Communications, 2001 (19): 2010-2011. | 14 | RADOSEVIC K, CVJETKO B M, GARRINA S V, et al. Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents[J]. Ecotoxicology and Environmental Safety, 2015, 112: 46-53. | 15 | SHAHBAZ K, MJALLI F S, HASHIM M A, et al. Prediction of the surface tension of deep eutectic solvents[J]. Fluid Phase Equilibria, 2012, 319: 48-54. | 16 | DAI Y T, VAN S J, WITKAMP G J, et al. Natural deep eutectic solvents as new potential media for green technology[J]. Analytica Chimica Acta, 2013, 766: 61-68. | 17 | SMITH E L, ABBOTT A P, RYDER K S. Deep eutectic solvents (DESs) and their applications[J]. Chemical Reviews, 2014, 114(21): 11060-11082. | 18 | ESPINO M, DE LOS áNGELES F M, GOMEZ FEDERICO J V, et al. Natural designer solvents for greening analytical chemistry[J]. TRAC Trends in Analytical Chemistry, 2016, 76: 126-136. | 19 | 易兰, 李文英, 冯杰, 等. 煤基液体油分离技术研究进展[J]. 化工学报, 2017, 68(10): 3678-3692. | 19 | YI L, LI W Y, FENG J, et al. Recent progress on coal-based liquid oil separation technology[J]. CIESC Journal, 2017, 68(10): 3678-3692. | 20 | HOU Y C, REN Y H, PENG W, et al. Separation of phenols from oil using imidazolium-based ionic liquids[J]. Industrial & Engineering Chemistry Research, 2013, 52(50): 18071-18075. | 21 | LIU Q, ZHANG X L, LI W, Separation of m-cresol from aromatic hydrocarbon and alkane using ionic liquids via hydrogen bond interaction[J]. Chinese Journal of Chemical Engineering, 2018, 27(11): 2675-2686. | 22 | MATHEWA C S, BHOSALE V K, KULKARNI P S, et al. Removal of phenol from organic system by using ionic liquids[J]. Current Environmental Engineering, 2019, 6(2): 126-133. | 23 | SIDEK N, MANAN N S A., MOHAMAD S. Efficient removal of phenolic compounds from model oil using benzyl imidazolium-based ionic liquids[J]. Journal of Molecular Liquids, 2017, 240: 794-802. | 24 | LI Z Y, LI R P, YUAN X Q, et al. Anionic structural effect in liquid–liquid separation of phenol from model oil by choline carboxylate ionic liquids[J]. Green Energy & Environment, 2019, 4(2): 131-138. | 25 | MENG H, GE C T, REN N N, et al. Complex extraction of phenol and cresol from model coal tar with polyols, ethanol amines, and ionic liquids thereof[J]. Industrial & Engineering Chemistry Research, 2014, 53(1): 355-362. | 26 | JI Y A, HOU Y C, REN S H, et al. Highly efficient separation of phenolic compounds from oil mixtures by imidazolium-based dicationic ionic liquids via forming deep eutectic solvents[J]. Energy & Fuels, 2017, 31(9): 10274-10282. | 27 | PANG K, HOU Y C, WU W Z, et al. Efficient separation of phenols from oils via forming deep eutectic solvents[J]. Green Chemistry, 2012, 14(9): 2398-2401. | 28 | GUO W J, HOU Y C, WU W Z, et al. Separation of phenol from model oils with quaternary ammonium salts via forming deep eutectic solvents[J]. Green Chemistry, 2013, 15(1): 226-229. | 29 | YAO C F, HOU Y C, REN S H, et al. Efficient separation of phenol from model oils using environmentally benign quaternary ammonium-based zwitterions via forming deep eutectic solvents[J]. Chemical Engineering Journal, 2017, 326: 620-626. | 30 | YAO C F, HOU Y C, REN S H, et al. Sulfonate based zwitterions: a new class of extractants for separating phenols from oils with high efficiency via forming deep eutectic solvents[J]. Fuel Processing Technology, 2018, 178: 206-212. | 31 | ZHANG Y, LI Z Y, WANG H Y, et al. Efficient separation of phenolic compounds from model oil by the formation of choline derivative-based deep eutectic solvents[J]. Separation and Purification Technology, 2016, 163: 310-318. | 32 | JIAO T T, LI C S, ZHUANG X L, et al. The new liquid-liquid extraction method for separation of phenolic compounds from coal tar[J]. Chemical Engineering Journal, 2015, 266: 148-155. | 33 | JIAO T T, ZHUANG X L, HE H Y, et al. Separation of phenolic compounds from coal tar via liquid–liquid extraction using amide compounds[J]. Industrial & Engineering Chemistry Research, 2015, 54(9): 2573-2579. | 34 | JI Y A, HOU Y C, REN S H, et al. Removal of the neutral oil entrained in deep eutectic solvents using an anti-extraction method[J]. Fuel Processing Technology, 2017, 160: 27-33. | 35 | GU T N, ZHANG M L, TAN T, et al. Deep eutectic solvents as novel extraction media for phenolic compounds from model oil[J]. Chemical Communications, 2014, 50(79): 11749-11752. | 36 | YI L, FENG J, LI W Y, et al. High-performance separation of phenolic compounds from coal-based liquid oil by deep eutectic solvents[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(8): 7777-7783. | 37 | KULKARNI P S, AFONSO C A M. Deep desulfurization of diesel fuel using ionic liquids: current status and future challenges[J]. Green Chemistry, 2010, 12(7): 1139-1149. | 38 | BOSMANN A, DATSEVICH L, JESS A, et al. Deep desulfurization of diesel fuel by extraction with ionic liquids[J]. Chemical Communications, 2001 (23): 2494-2495. | 39 | HUANG C P, CHEN B H, ZHANG J, et al. Desulfurization of gasoline by extraction with new ionic liquids[J]. Energy & Fuels, 2004, 18(6): 1862-1864. | 40 | ZHANG S G, ZHANG Q L, ZHANG Z C. Extractive desulfurization and denitrogenation of fuels using ionic liquids[J]. Industrial & Engineering Chemistry Research, 2004, 43(2): 614-622. | 41 | CHEN X C, YUAN S, ABDELTAWAB A A, et al. Extractive desulfurization and denitrogenation of fuels using functional acidic ionic liquids[J]. Separation and Purification Technology, 2014, 133: 187-193. | 42 | AMARASEKARA A S. Acidic ionic liquids[J]. Chemical Reviews, 2016, 116(10): 6133-6183. | 43 | LIU D, GUI J, SONG L, et al. Deep desulfurization of diesel fuel by extraction with task-specific ionic liquids[J]. Petroleum Science and Technology, 2008, 26(9): 973-982. | 44 | RIBEIRO M C. High viscosity of imidazolium ionic liquids with the hydrogen sulfate anion: a Raman spectroscopy study[J]. Journal of Physical Chemistry B, 2012, 116(24): 7281-7290. | 45 | PLAYER L C, CHAN B, LUI M Y, et al. Toward an understanding of the forces behind extractive desulfurization of fuels with ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 4087-4093. | 46 | WILFRED C D, KIAT C F, MAN Z, et al. Extraction of dibenzothiophene from dodecane using ionic liquids[J]. Fuel Processing Technology, 2012, 93(1): 85-89. | 47 | LI C P, LI D, ZOU S S, et al. Extraction desulfurization process of fuels with ammonium-based deep eutectic solvents[J]. Green Chemistry, 2013, 15(10): 2793-2799. | 48 | JIANG W, LI H P, WANG C, et al. Synthesis of ionic-liquid-based deep eutectic solvents for extractive desulfurization of fuel[J]. Energy & Fuels, 2016, 30(10): 8164-8170. | 49 | LI C P, ZHANG J J, LI Z, et al. Extraction desulfurization of fuels with ‘metal ions’ based deep eutectic solvents (MDESs)[J]. Green Chemistry, 2016, 18(13): 3789-3795. | 50 | GANO Z S, MJALLI F S, AL-WAHAIBI T, et al. Solubility of thiophene and dibenzothiophene in anhydrous FeCl3- and ZnCl2-based deep eutectic solvents[J]. Industrial & Engineering Chemistry Research, 2014, 53(16): 6815-6823. | 51 | GANO Z S, MJALLI F S, AL-WAHAIBI T, et al. Extractive desulfurization of liquid fuel with FeCl3-based deep eutectic solvents: experimental design and optimization by central-composite design[J]. Chemical Engineering and Processing: Process Intensification, 2015, 93: 10-20. | 52 | GANO Z S, MJALLI F S, ALWAHAIBI T, et al. Desulfurization of liquid fuel via extraction with imidazole-containing deep eutectic solvent[J]. Green Processing & Synthesis, 2017, 6(5): 511-521. | 53 | TANG X D, ZHANG Y F, LI J J, et al. Deep extractive desulfurization with arenium ion deep eutectic solvents[J]. Industrial & Engineering Chemistry Research, 2015, 54(16): 4625-4632. | 54 | LI J J, XIAO H, TANG X D, et al. Green carboxylic acid-based deep eutectic solvents as solvents for extractive desulfurization[J]. Energy & Fuels, 2016, 30(7): 5411-5418. | 55 | KHEZELI T, DANESHFAR A. Synthesis and application of magnetic deep eutectic solvents: novel solvents for ultrasound assisted liquid-liquid microextraction of thiophene[J]. Ultrasonics Sonochemistry, 2017, 38: 590-597. | 56 | GAO H S, XING J M, LI Y G, et al. Desulfurization of diesel fuel by extraction with lewis-acidic ionic liquid[J]. Separation Science and Technology, 2009, 44(4): 971-982. | 57 | SHU C H, SUN T H. Extractive desulfurisation of gasoline with tetrabutyl ammonium chloride-based deep eutectic solvents[J]. Separation Science and Technology, 2016, 51(8): 1336-1343. | 58 | ALI M C, YANG Q W, FINE A A, et al. Efficient removal of both basic and non-basic nitrogen compounds from fuels by deep eutectic solvents[J]. Green Chemistry, 2016, 18(1): 157-164. | 59 | E?ER J, WASSERSCHEID P, JESS A. Deep desulfurization of oil refinery streams by extraction with ionic liquids[J]. Greem Chemistry, 2004, 6(7): 316-322. | 60 | XIE L L, FAVRE-REGUILLON A, PELLET-ROSTAING S, et al. Selective extraction and identification of neutral nitrogen compounds contained in straight-run diesel feed using chloride based ionic liquid[J]. Industrial & Engineering Chemistry Research, 2008, 47(22): 8801-8807. | 61 | XIE L L, FAVRE-REGUILLON A, WANG X X, et al. Selective extraction of neutral nitrogen compounds found in diesel feed by 1-butyl-3-methyl-imidazolium chloride[J]. Green Chemistry, 2008, 10(5): 524-531. | 62 | JIE L, BO M. Removal of nitrogen compounds from shale diesel fraction using ionic liquid [C4mim]HSO4[J]. China Petroleum Processing & Petrochemical Technology, 2016, 18(3): 15-21. | 63 | ZHANG L Z, ZHANG M, GAO J, et al. Efficient extraction of neutral heterocyclic nitrogen compounds from coal tar via ionic liquids and its mechanism analysis[J]. Energy & Fuels, 2018, 32(9): 9358-9370. | 64 | JIAO T T, ZHUANG X L, HE H Y, et al. An ionic liquid extraction process for the separation of indole from wash oil[J]. Green Chemistry, 2015, 17(7): 3783-3790. | 65 | ZHANG L Z, XU D M, GZO J, et al. Extraction and mechanism for the separation of neutral N-compounds from coal tar by ionic liquids[J]. Fuel, 2017, 194: 27-35. | 66 | ASUMANA C, YU G G, GUAN Y W, et al. Extractive denitrogenation of fuel oils with dicyanamide-based ionic liquids[J]. Green Chemistry, 2011, 13(11): 3300-3305. | 67 | LUI M Y, CATTELAN L, PLAYER L C, et al. Extractive denitrogenation of fuel oils with ionic liquids: a systematic study[J]. Energy & Fuels, 2016, 31(3): 2183-2189. | 68 | HUH E S, ZAZYBIN A, PALGUNADI J, et al. Zn-containing ionic liquids for the extractive denitrogenation of a model oil: a mechanistic consideration[J]. Energy & Fuels, 2009, 23(6): 3032-3038. | 69 | KROLIKOWSKA M, KARPINSKA M. Extraction of aromatic nitrogen compounds from heptane using quinolinium and isoquinolinium based ionic liquids[J]. Fluid Phase Equilibria, 2015, 400: 1-7. | 70 | LI H, ZHU W, CHANG Y, et al. Theoretical investigation of the interaction between aromatic sulfur compounds and [BMIM](+)[FeCl4](-) ionic liquid in desulfurization: a novel charge transfer mechanism[J]. Journal of Molecular Graphics and Modelling, 2015, 59: 40-49. | 71 | CERON M A, GUZMAN-LUCERO D J, PALOMEQUE J F, et al. Parallel microwave-assisted synthesis of ionic liquids and screening for denitrogenation of straight-run diesel feed by liquid-liquid extraction[J]. Combinatorial Chemistry & High Throughput Screening, 2012, 15(5): 427-432. | 72 | HIZADDIN H F, RAMALINGAM A, HASHIM M A, et al. Evaluating the performance of deep eutectic solvents for use in extractive denitrification of liquid fuels by the conductor-like screening model for real solvents[J]. Journal of Chemical and Engineering Data, 2014, 59(11): 3470-3487. | 73 | HIZADDIN H F, HADJ-KALI M K, RAMALINGAM A, et al. Extractive denitrogenation of diesel fuel using ammonium- and phosphonium-based deep eutectic solvents[J]. The Journal of Chemical Thermodynamics, 2016, 95: 164-173. | 74 | SANDER A, ROGOSIC M, SLIVAR A, et al. Separation of hydrocarbons by means of liquid-liquid extraction with deep eutectic solvents[J]. Solvent Extraction and Ion Exchange, 2016, 34(1): 86-98. | 75 | KUCAN K Z, PERKOVIC M, CMRK K, et al. Betaine+(glycerol or ethylene glycol or propylene glycol) deep eutectic solvents for extractive purification of gasoline[J]. Chemistryselect, 2018, 3(44): 12582-12590. | 76 | ROGOSIC M, KUCAN K Z. Deep eutectic solvents based on choline chloride and ethylene glycol as media for extractive denitrification/desulfurization/dearomatization of motor fuels[J]. Journal of Industrial and Engineering Chemistry, 2019, 72: 87-99. | 77 | ALI M C, LIU R R, CHEN J, et al. New deep eutectic solvents composed of crown ether, hydroxide and polyethylene glycol for extraction of non-basic N-compounds[J]. Chinese Chemical Letters, 2019, 30(4): 871-874 | 78 | LI W S, LIU J. Removal of basic nitrogen compounds from fuel oil with [C4mim]Br/ZnCl2 ionic liquid[J]. Petroleum Science and Technology, 2017, 35(13): 1364-1369. | 79 | LI J, ZENG K, XU H X, et al. Denitrification of fuel oil by hydrogen-sulfate pyrazolium-based ionic liquids[J]. Chemistryselect, 2017, 2(35): 11469-11473. | 80 | LIMA F, DAVE M, SILVESTRE A J D, et al. Concurrent desulfurization and denitrogenation of fuels using deep eutectic solvents[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11341-11349. | 81 | DOMA?SKA U, POBUDKOWSKA A, KROLIKOWSKI M. Separation of aromatic hydrocarbons from alkanes using ammonium ionic liquid C2NTf2 at T=298.15K[J]. Fluid Phase Equilibria, 2007, 259(2): 173-179. | 82 | SELVAN M S, MCKINLEY M D, DUBOIS R H, et al. Liquid-liquid equilibria for toluene+heptane+1-ethyl-3-methylimidazolium triiodide and toluene+heptane+1-butyl-3-methylimidazolium triiodide[J]. Journal of Chemical & Engineering Data, 2000, 45(5): 841-845. | 83 | DEENADAYALU N, NGCONGO K C, LETCHER T M, et al. Liquid-liquid equilibria for ternary mixtures (an ionic liquid+benzene+heptane or hexadecane) at T=298.2K and atmospheric pressure[J]. Journal of Chemical & Engineering Data, 2006, 51(3): 988-991. | 84 | MEINDERSMA G W, PODT A J G, DE HAAN A B. Ternary liquid-liquid equilibria for mixtures of toluene+n-heptane+an ionic liquid[J]. Fluid Phase Equilibria, 2006, 247(1/2): 158-168. | 85 | MEINDERSMA G W, HANSMEIER A R, DE HAAN A B. Ionic liquids for aromatics extraction. present status and future outlook[J]. Industrial & Engineering Chemistry Research, 2010, 49(16): 7530-7540. | 86 | DUKHANDE V A, CHOKSI T S, SABNIS S U, et al. Separation of toluene from n-heptane using monocationic and dicationic ionic liquids[J]. Fluid Phase Equilibria, 2013, 342: 75-81. | 87 | YAO C F, HOU Y C, WU W Z, et al. Imidazolium-based dicationic ionic liquids: highly efficient extractants for separating aromatics from aliphatics[J]. Green Chemistry, 2018, 20(13): 3101-3111. | 88 | ZHANG F, LI Y, ZHANG L, et al. Benzyl- and vinyl-functionalized imidazoium ionic liquids for selective separating aromatic hydrocarbons from alkanes[J]. Industrial & Engineering Chemistry Research, 2016, 55(3): 747-756. | 89 | ALKHALDI K H A E, AL-JIMAZ A, ALTUWAIM M S. Liquid extraction of toluene from heptane, octane, or nonane using mixed ionic solvents of 1-ethyl-3-methylimidazolium methylsulfate and 1-hexyl-3-methylimidazolium hexafluorophosphate[J]. Journal of Chemical & Engineering Data, 2018, 64(1): 169-175. | 90 | KAREEM M A, MJALLI F S, HASHIM M A, et al. Liquid-liquid equilibria for the ternary system (phosphonium based deep eutectic solvent-benzene-hexane) at different temperatures: a new solvent introduced[J]. Fluid Phase Equilibria, 2012, 314: 52-59. | 91 | KAREEM M A, MJALLI F S, HASHIM M A, et al. Phase equilibria of toluene/heptane with tetrabutylphosphonium bromide based deep eutectic solvents for the potential use in the separation of aromatics from naphtha[J]. Fluid Phase Equilibria, 2012, 333: 47-54. | 92 | KAREEM M A, MJALLI F S, HASHIM M A, et al. Phase equilibria of toluene/heptane with deep eutectic solvents based on ethyltriphenylphosphonium iodide for the potential use in the separation of aromatics from naphtha[J]. The Journal of Chemical Thermodynamics, 2013, 65: 138-149. | 93 | GONZALEZ A S B, FRANCISCO M, JIMENO G, et al. Liquid-liquid equilibrium data for the systems {LTTM plus benzene plus hexane} and {LTTM plus ethyl acetate plus hexane} at different temperatures and atmospheric pressure[J]. Fluid Phase Equilibria, 2013, 360: 54-62. | 94 | MULYONO S, HIZADDIN H F, ALBASHEF I M, et al. Separation of BTEX aromatics from n-octane using a (tetrabutylammonium bromide plus sulfolane) deep eutectic solvent-experiments and COSMO-RS prediction[J]. RSC Advances, 2014, 4(34): 17597-17606. | 95 | HADJ-KALI M K. Separation of ethylbenzene and n-octane using deep eutectic solvents[J]. Green Processing and Synthesis, 2015, 4(2): 117-123. | 96 | WANG Y, HOU Y C, WU W Z, et al. Roles of a hydrogen bond donor and a hydrogen bond acceptor in the extraction of toluene from n-heptane using deep eutectic solvents[J]. Green Chemistry, 2016, 18(10): 3089-3097. | 97 | RODIGUEZ N R, GERLACH T, SCHEEPERS D, et al. Experimental determination of the LLE data of systems consisting of {hexane+benzene+deep eutectic solvent} and prediction using the conductor-like screening model for real solvents[J]. The Journal of Chemical Thermodynamics, 2017, 104: 128-137. | 98 | KURNIA K A, ATHIRAH N A, CANDIEIRO F J M, et al. Phase behavior of ternary mixtures {aliphatic hydrocarbon + aromatic hydrocarbon + deep eutectic solvent}: a step forward toward “greener” extraction process[J]. Procedia Engineering, 2016, 148: 1340-1345. | 99 | ARCE A, EARLE M J, RODRIGUEZ H, et al. Separation of aromatic hydrocarbons from alkanes using the ionic liquid 1-ethyl-3-methylimidazoliumbis{(trifluoromethyl)sulfonyl}amide[J]. Green Chemistry, 2007, 9(1): 70-74. | 100 | ARCE A, EARLE M J, RODRIGUEZ H, et al. Separation of benzene and hexane by solvent extraction with 1-alkyl-3-methylimidazolium bis {(trifluoromethyl) sulfonyl} amide ionic liquids: effect of the alkyl-substituent length[J]. The Journal of Physical Chemistry B, 2007, 111(18): 4732-4736. | 101 | NAIK P K, DEHURY P, PAUL S, et al. Evaluation of deep eutectic solvent for the selective extraction of toluene and quinoline at T=308.15K and p=1bar[J]. Fluid Phase Equilibria, 2016, 423: 146-155. | 102 | LARRIBA M, NAVARRO P, GARCIA J, et al. Liquid-liquid extraction of toluene from heptane using [emim][DCA], [bmim][DCA], and [emim][TCM] ionic liquids[J]. Industrial & Engineering Chemistry Research, 2013, 52(7): 2714-2720. | 103 | GAI H J, QIAO L, ZHONG C Y, et al. Designing ionic liquids with dual lewis basic sites to efficiently separate phenolic compounds from low-temperature coal tar[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10841-10850. | 104 | LI Z, LI C P, CHI Y S, et al. Extraction process of dibenzothiophene with new distillable amine-based protic ionic liquids[J]. Energy & Fuels, 2012, 26(6): 3723-3727. | 105 | LI H P, ZHANG B B, JIANG W, et al. A comparative study of the extractive desulfurization mechanism by Cu(II) and Zn-based imidazolium ionic liquids[J]. Green Energy & Environment, 2019, 4(1): 38-48. | 106 | CHENG H Y, ZHANG J W, QI Z W. Effects of interaction with sulphur compounds and free volume in imidazolium-based ionic liquid on desulphurisation: a molecular dynamics study[J]. Molecular Simulation, 2017, 44(1): 55-62. | 107 | ZHAO X, ZHU G, JIAO L, et al. Formation and extractive desulfurization mechanisms of aromatic acid based deep eutectic solvents: an experimental and theoretical study[J]. Chemistry, 2018, 24(43): 11021-11032. | 108 | GUTIERREZ A, ATILHAN M, APARICIO S. Theoretical study of oil desulfuration by ammonium-based deep eutectic solvents[J]. Energy & Fuels, 2018, 32(7): 7497-7507. | 109 | ANANTHARAJ R, BANERJEE T. Quantum chemical studies on the simultaneous interaction of thiophene and pyridine with ionic liquid[J]. AIChE Journal, 2011, 57(3): 749-764. | 110 | LV R Q, QU Z Q, YU H, et al. Comparative study on interactions between ionic liquids and pyridine/hexane[J]. Chemical Physics Letters, 2012, 532: 13-18. | 111 | LV R Q, WU C C, LIN J, et al. The study on interactions between 1-ethyl-3-methylimidazolium chloride and benzene/pyridine/pyrrole/thiophene[J]. Journal of Physical Organic Chemistry |
[1] |
CUI Shoucheng, XU Hongbo, PENG Nan.
Simulation analysis of two MOFs materials for O2/He adsorption separation
[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390.
|
[2] |
LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei.
Research progress in separation and extraction of high value components by electrodialysis
[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429.
|
[3] |
GUO Qiang, ZHAO Wenkai, XIAO Yonghou.
Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption
[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72.
|
[4] |
MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun.
Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents
[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232.
|
[5] |
HE Meijin.
Application and development trend of molecular management in separation technology in petrochemical field
[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 260-266.
|
[6] |
LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng.
Application and progress of solvent deasphalting technology
[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586.
|
[7] |
QIAN Sitian, PENG Wenjun, ZHANG Xianming.
Comparative analysis of forming cyclic oligomers via PET melt polycondensation and cyclodepolymerization
[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4808-4816.
|
[8] |
PAN Yichang, ZHOU Rongfei, XING Weihong.
Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges
[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942.
|
[9] |
LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong.
Advances in nanofluid for CO2 absorption and separation
[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815.
|
[10] |
ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin.
Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research
[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456.
|
[11] |
CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang.
Research progress on self-healing oil/water separation membranes
[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610.
|
[12] |
ZHOU Lei, SUN Xiaoyan, TAO Shaohui, CHEN Yushi, XIANG Shuguang.
Development and application of refinery short-cut column model
[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2819-2827.
|
[13] |
WU Heping, CAO Ning, XU Yuanyuan, CAO Yunbo, LI Yudong, YANG Qiang, LU Hao.
Rapid separation of hydrofluoric acid and alkylated oil
[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2845-2853.
|
[14] |
SONG Minhang, ZHAO Lixin, XU Baorui, LIU Lin, ZHANG Shuang.
Research progress of cyclone-enhanced separation based on disperse phase rearrangement at the inlet
[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2219-2232.
|
[15] |
ZHAO Yao, ZHOU Zhihui, WU Hongdan, HU Chuanzhi, ZHANG Guochun, WU Ruipeng.
Response surface analysis and optimization of membrane permeation vaporization by Silicalite-1 molecular sieve
[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2586-2594.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
|
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd
|
|