Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (05): 2461-2470.DOI: 10.16085/j.issn.1000-6613.2018-1576
• Resources and environmental engineering • Previous Articles Next Articles
Zhihui HUANG1,2,3(),Zhiyong JI1,2,3(),Xi CHEN2,3,Xiaofu GUO2,3,Shizhao WANG2,3,Junsheng YUAN1,2,3
Received:
2018-08-01
Revised:
2018-10-22
Online:
2019-05-05
Published:
2019-05-05
Contact:
Zhiyong JI
黄智辉1,2,3(),纪志永1,2,3(),陈希2,3,郭小甫2,3,王士钊2,3,袁俊生1,2,3
通讯作者:
纪志永
作者简介:
黄智辉(1993—),男,博士研究生,研究方向为环境化学。E-mall:<email>cmhzh@163.com</email>。
基金资助:
CLC Number:
Zhihui HUANG, Zhiyong JI, Xi CHEN, Xiaofu GUO, Shizhao WANG, Junsheng YUAN. Degradation of organic pollutants in water by persulfate advanced oxidation[J]. Chemical Industry and Engineering Progress, 2019, 38(05): 2461-2470.
黄智辉, 纪志永, 陈希, 郭小甫, 王士钊, 袁俊生. 过硫酸盐高级氧化降解水体中有机污染物研究进展[J]. 化工进展, 2019, 38(05): 2461-2470.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1576
污染物 | 活化手段 | 氧化剂/ 污染物 (摩尔比) | 反应时间 /min | 去除率/% | 初始 pH | 最适pH | pH范围 | 主要氧化物质 | 文献 |
---|---|---|---|---|---|---|---|---|---|
norfloxacin | 磁性纳米粒子 | 66.67 | 60 | 90 | 4 | 4,6.7 | 4,6.7,9 | SO4 -·,·OH | [ |
chloramphenicol | UV | 33.33 | 120 | 79.8 | 3 | 3 | 3~11 | SO4 -· | [ |
tetracycline | magnetic Ag/AgCl/zeolite | 22.22 | 120 | 100 | 3.5 | 3.5 | 3.5~7.5 | SO4 -·,·O2 - | [ |
tetracycline | AC@Fe3O4 | 441.18 | 240 | 99.8 | 3 | 3 | 3~7 | SO4 -· | [ |
sulfaclozine | UV/TiO3 | 100 | 60 | 99 | 7,11 | 11 | 7,11 | SO4 -·,·OH | [ |
sulfaclozine | UV | 200 | 60 | 80 | 7,11 | 7,11 | 7,11 | SO4 -·,·OH | [ |
sulfaclozine | 太阳光 | 200 | 60 | 84 | 7 | SO4 -·,·OH | [ | ||
sulfaclozine | Fe(Ⅱ) | 200 | 60 | 60 | 7 | SO4 -·,·OH | [ | ||
cefixime | UV/zeolite-TiO2 | 1818.18 | 40 | 59 | 7 | SO4 -·,·OH | [ | ||
phenazopyridine | UV/zeolite-TiO2 | 106.38 | 30 | 70 | 7 | SO4 -·,·OH | [ | ||
reactive black 5 | UV/zeolite-TiO2 | 2000 | 40 | 92 | 7 | SO4 -·,·OH | [ | ||
acid orange 7 | Vis/MIL-53(Fe) | 40 | 50 | 99 | 3 | 3 | 3,6,7,9 | SO4 -·,·OH | [ |
orange G | WMF/Fe0 | 10 | 8 | 98 | 3 | 3 | 3~10 | SO4 -· | [ |
caffeine | WMF/Fe0 | 25 | 50 | 98 | 7 | SO4 -· | [ | ||
4-nitrophenol | WMF/Fe0 | 25 | 60 | 96 | 7 | SO4 -· | [ | ||
benzotriazole | WMF/Fe0 | 25 | 80 | 90 | 7 | SO4 -· | [ | ||
diuron | WMF/Fe0 | 25 | 30 | 92 | 7 | SO4 -· | [ | ||
naphthol blue black | 超声 | 259.03 | 20 | 92 | 6 | SO4 -· | [ | ||
rhodamine B | 超声/FeSO4 | 1300 | 6 | 99 | 3 | 3 | 3~11 | SO4 -·,·OH | [ |
amaranth | 二茂铁 | 12.21 | 60 | 99 | 5 | 3~6 | 3~11 | SO4 -· | [ |
2,4,4'-trichlorobiphenyl | V2O3 | 256.41 | 240 | 100 | 5.9 | 5.9 | 5.9,7.4,8.4 | SO4 -· | [ |
perfluorooctanoic acid | 铁改性硅藻土 | 12500 | 360 | 50 | 12 | 12 | 3,9,12 | SO4 -·,·O2 - | [ |
perfluorooctanoic acid | UV | 100 | 360 | 83.3 | 4 | SO4 -· | [ | ||
decabromodiphenyl ether | Fe(Ⅱ) | 19183.40 | 360 | 53 | 3 | 3 | 3~9 | SO4 -· | [ |
decabromodiphenyl ether | 热 | 23979.25 | 360 | 53.8 | 5 | 5 | 3~9 | SO4 -· | [ |
p-chloroaniline | 黄铁矿(FeS2) | 5 | 60 | 100 | 3 | 3 | 3~11 | SO4 -·,·OH,·O2 - | [ |
triclosan | 热 | 5 | 48 | 100 | 3 | 3,5 | 3~11 | SO4 -· | [ |
4-tert-butylphenol | 正方针铁矿 | 20 | 120 | 90 | 4.7 | 无影响 | SO4 -·,·O2 - | [ | |
4-tert-butylphenol | 水铁矿 | 20 | 300 | 60 | 4.7 | 3.2 | 3.2~8 | SO4 -·,·O2 - | [ |
4-tert-butylphenol | Fe(Ⅲ) | 20 | 180 | 62 | 2.4 | 2.4 | 2.4~5 | SO4 -·,·O2 - | [ |
EDTA | UV | 60 | 40 | 100 | 2 | 2,4,6,8 | 2,4,6,8,10 | SO4 -· | [ |
triton X-45 | Al0 | 73.61 | 90 | 100 | 3 | SO4 -·,·OH | [ | ||
bisphenol A | 零价铁 | 28.54 | 60 | 100 | 5 | SO4 -· | [ | ||
phenol | 纳米金刚石 | 30.58 | 20 | 100 | 11 | 11 | 2~11 | SO4 -·,·OH | [ |
污染物 | 活化手段 | 氧化剂/ 污染物 (摩尔比) | 反应时间 /min | 去除率/% | 初始 pH | 最适pH | pH范围 | 主要氧化物质 | 文献 |
---|---|---|---|---|---|---|---|---|---|
norfloxacin | 磁性纳米粒子 | 66.67 | 60 | 90 | 4 | 4,6.7 | 4,6.7,9 | SO4 -·,·OH | [ |
chloramphenicol | UV | 33.33 | 120 | 79.8 | 3 | 3 | 3~11 | SO4 -· | [ |
tetracycline | magnetic Ag/AgCl/zeolite | 22.22 | 120 | 100 | 3.5 | 3.5 | 3.5~7.5 | SO4 -·,·O2 - | [ |
tetracycline | AC@Fe3O4 | 441.18 | 240 | 99.8 | 3 | 3 | 3~7 | SO4 -· | [ |
sulfaclozine | UV/TiO3 | 100 | 60 | 99 | 7,11 | 11 | 7,11 | SO4 -·,·OH | [ |
sulfaclozine | UV | 200 | 60 | 80 | 7,11 | 7,11 | 7,11 | SO4 -·,·OH | [ |
sulfaclozine | 太阳光 | 200 | 60 | 84 | 7 | SO4 -·,·OH | [ | ||
sulfaclozine | Fe(Ⅱ) | 200 | 60 | 60 | 7 | SO4 -·,·OH | [ | ||
cefixime | UV/zeolite-TiO2 | 1818.18 | 40 | 59 | 7 | SO4 -·,·OH | [ | ||
phenazopyridine | UV/zeolite-TiO2 | 106.38 | 30 | 70 | 7 | SO4 -·,·OH | [ | ||
reactive black 5 | UV/zeolite-TiO2 | 2000 | 40 | 92 | 7 | SO4 -·,·OH | [ | ||
acid orange 7 | Vis/MIL-53(Fe) | 40 | 50 | 99 | 3 | 3 | 3,6,7,9 | SO4 -·,·OH | [ |
orange G | WMF/Fe0 | 10 | 8 | 98 | 3 | 3 | 3~10 | SO4 -· | [ |
caffeine | WMF/Fe0 | 25 | 50 | 98 | 7 | SO4 -· | [ | ||
4-nitrophenol | WMF/Fe0 | 25 | 60 | 96 | 7 | SO4 -· | [ | ||
benzotriazole | WMF/Fe0 | 25 | 80 | 90 | 7 | SO4 -· | [ | ||
diuron | WMF/Fe0 | 25 | 30 | 92 | 7 | SO4 -· | [ | ||
naphthol blue black | 超声 | 259.03 | 20 | 92 | 6 | SO4 -· | [ | ||
rhodamine B | 超声/FeSO4 | 1300 | 6 | 99 | 3 | 3 | 3~11 | SO4 -·,·OH | [ |
amaranth | 二茂铁 | 12.21 | 60 | 99 | 5 | 3~6 | 3~11 | SO4 -· | [ |
2,4,4'-trichlorobiphenyl | V2O3 | 256.41 | 240 | 100 | 5.9 | 5.9 | 5.9,7.4,8.4 | SO4 -· | [ |
perfluorooctanoic acid | 铁改性硅藻土 | 12500 | 360 | 50 | 12 | 12 | 3,9,12 | SO4 -·,·O2 - | [ |
perfluorooctanoic acid | UV | 100 | 360 | 83.3 | 4 | SO4 -· | [ | ||
decabromodiphenyl ether | Fe(Ⅱ) | 19183.40 | 360 | 53 | 3 | 3 | 3~9 | SO4 -· | [ |
decabromodiphenyl ether | 热 | 23979.25 | 360 | 53.8 | 5 | 5 | 3~9 | SO4 -· | [ |
p-chloroaniline | 黄铁矿(FeS2) | 5 | 60 | 100 | 3 | 3 | 3~11 | SO4 -·,·OH,·O2 - | [ |
triclosan | 热 | 5 | 48 | 100 | 3 | 3,5 | 3~11 | SO4 -· | [ |
4-tert-butylphenol | 正方针铁矿 | 20 | 120 | 90 | 4.7 | 无影响 | SO4 -·,·O2 - | [ | |
4-tert-butylphenol | 水铁矿 | 20 | 300 | 60 | 4.7 | 3.2 | 3.2~8 | SO4 -·,·O2 - | [ |
4-tert-butylphenol | Fe(Ⅲ) | 20 | 180 | 62 | 2.4 | 2.4 | 2.4~5 | SO4 -·,·O2 - | [ |
EDTA | UV | 60 | 40 | 100 | 2 | 2,4,6,8 | 2,4,6,8,10 | SO4 -· | [ |
triton X-45 | Al0 | 73.61 | 90 | 100 | 3 | SO4 -·,·OH | [ | ||
bisphenol A | 零价铁 | 28.54 | 60 | 100 | 5 | SO4 -· | [ | ||
phenol | 纳米金刚石 | 30.58 | 20 | 100 | 11 | 11 | 2~11 | SO4 -·,·OH | [ |
1 | GLAZE W H . Drinking-water treatment with ozone[J]. Environmental Science & Technology, 1987, 21(3): 224-230. |
2 | 张旋, 王启山 . 高级氧化技术在废水处理中的应用[J]. 水处理技术, 2009, 35(3): 24-28. |
ZHANG Xuan , WANG Qishan . Application of advanced oxidation technologies in wastewater treatment[J]. Technology of Water Treatment, 2009, 35(3): 24-28. | |
3 | MARRONE P A , HONG G T . Corrosion control methods in supercritical water oxidation and gasification[J].The Journal of Supercritical Fluids, 2009, 51(2): 83-103. |
4 | WANG J , WANG S . Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. |
5 | HOUSE D A . Kinetics and mechanism of oxidations by peroxydisulfate[J]. Chemical Reviews, 1961, 62(3): 185-203. |
6 | ANIPSITAKIS G P , DIONYSIOU D D . Transition metal/UV-based advanced oxidation technologies for water decontamination[J]. Applied Catalysis B: Environmental, 2004, 54(3): 155-163. |
7 | ANIPSITAKIS G P , DIONYSIOU D D . Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004, 38(13): 3705-3712. |
8 | NETA P , HUIE R E , ROSS A B . Rate constants for reactions of inorganic radicals in aqueous-solution[J]. Journal of Physical & Chemical Reference Date, 1988, 17(3): 1027-1284. |
9 | HOELDERICH W F , KOLLMER F . Oxidation reactions in the synthesis of fine and intermediate chemicals using environmentally benign oxidants and the right reactor system [J]. Pure and Applied Chemistry, 2000, 72: 1273-1287. |
10 | XU Z , SHAN C , XIE B , et al . Decomplexation of Cu(Ⅱ)-EDTA by UV/Persulfate and UV/H2O2: efficiency and mechanism[J]. Applied Catalysis B: Environmental, 2016, 200: 439-447. |
11 | KUSIC H , PETERNEL I , KOPRIVANAC N , et al . Ironactivated persulfate oxidation of an azo dye in model wastewater: influence of iron activator type on process optimization[J]. Journal of Environmental Chemical Engineering, 2011, 137 (6): 454: 463. |
12 | OH S Y, KANG S G , CHIU P C . Degradation of 2,4-dinitrotoluene by persulfate activated with zero-valent iron[J]. Science of the Total Environment, 2010, 408(16): 3464-3468. |
13 | LIANG C J , GUO Y Y . Mass transfer and chemical oxidation of naphthalene particles with zerovalent iron activated persulfate [J]. Environmental Science & Technology, 2010, 44(21): 8203-8208. |
14 | LE C , WU J H , LI P , et al . Decolorization of anthraquinone dye reactive blue 19 by the combination of persulfate and zero-valent iron[J]. Water Science and Technology, 2011, 64(3): 754-759. |
15 | HUSSAIN I , ZHANG Y , HUANG S , et al . Degradation of pchloroaniline by persulfate activated with zero-valent iron[J]. Chemical Engineering Journal, 2012, 203: 269-276. |
16 | XIONG X M , SUN B , ZHANG J , et al . Activating persulfate by Fe0 coupling with weak magnetic field: performance and mechanism [J]. Water Research, 2014, 62: 53-62. |
17 | GIRIT B , DURSUN D , OLMEZHANCI T , et al . Treatment of aqueous bisphenol A using nano-sized zero-valent iron in the presence of hydrogen peroxide and persulfate oxidants.[J]. Water Science & Technology, 2015, 71(12): 1859-1868. |
18 | ARSLANALATON I , OLMEZHANCI T , GENÇ B , et al . Advanced oxidation of the commercial nonionic surfactant octylphenol polyethoxylate Triton™ X-45 by the persulfate/UV-C process: effect of operating parameters and kinetic evaluation[J]. Frontiers in Chemistry, 2013, 1: 4. |
19 | LIU C S , SHIH K , SUN C X , et al . Oxidative degradation of propachlor by ferrous and copper ion activated persulfate[J]. Science of the Total Environment, 2012, 416: 507-512. |
20 | 吴丽颖, 王炳煌, 张圆春,等 . 凝胶球负载零价铁活化过硫酸盐降解偶氮染料废水[J]. 化工进展, 2017, 36(6): 2318-2324. |
21 | WU Liying , WANG Binghuang , ZHANG Yuanchun , et al . Degradation of Reactive Black 5 (RBK5) by gelatin balls loading iron activating sodium persulfate[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2318-2324. |
22 | WU Y , PRULHO R , BRIGANTE M , et al . Activation of persulfate by Fe(Ⅲ) species: implications for 4-tert-butylphenol degradation[J]. Journal of Hazardous Materials, 2017, 322: 380-386. |
23 | COPE V W , CHEN S N , Hoffman M Z . Intermediates in the photochemistry of of carbonato-amine complexes of cobalt(Ⅲ). Carbonate(-) radicals and the aquocarbonato complex[J]. Journal of the American Chemical Society, 1973, 95(10): 3116-3121. |
24 | LIN K A , LIN J , JOCHEMS A P . Oxidation of amaranth dye by persulfate and peroxymonosulfate activated by ferrocene [J]. Journal of Chemical Technology & Biotechnology, 2017, 92: 163–172. |
25 | TANC Q , FU D F , GAO N Y , et al . Kinetic degradation of chloramphenicol in water byUV/persulfate system[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 332: 406-412. |
26 | BENNEDSEN L R , MUFF J , SØGAARD E G . Influence of chloride and carbonates on the reactivity of activated persulfate[J]. Chemosphere, 2012, 86(11): 1092-1097. |
27 | DENG J , SHAO Y , GAO N , et al . Degradation of the antiepileptic drug carbamazepine upon different UV-based advanced oxidation processes in water[J]. Chemical Engineering Journal, 2013, 222: 150-158. |
28 | QIAN Y J , GUO X , ZHANG Y L , et al . Perfluorooctanoic acid degradation using UV−persulfate process: modeling of the degradation and chlorate formation[J]. Environmental Science & Technology, 2016, 50: 772-781. |
29 | FANG G , GAO J , DIONYSIOU D D , et al . Activation of persulfate by quinones: free radical reactions and implication forthe degradation of PCBs[J]. Environmental Science & Technology, 2013, 47(9): 4605−4611. |
30 | AHMAD M , TEEL A L , WATTS R J . Mechanism of persulfate activation by phenols[J]. Environmental Science & Technology, 2013, 47(11): 5864-5871. |
31 | GRACA C , VELOSA A C , TEIXEIRA A C . Amicarbazone degradation by UVA-activated persulfate in the presence of hydrogen peroxide or Fe2+ [J]. Catalysis Today, 2017, 280: 80-85. |
32 | KEEN O S , LOVE N G , LINDEN K G . The role of effluent nitrate in trace organic chemical oxidation during UV disinfection[J]. Water Research, 2012, 46(16): 5224-5234. |
33 | LIANG C , WANG Z S , BRUELL C J . Influence of pH on persulfate oxidation of TCE at ambient temperatures[J]. Chemosphere, 2007, 66(1): 106-113. |
34 | PENNINGTON D E , HAIM A . Stoichiometry and mechanism of the chromium(Ⅱ)-peroxydisulfate reaction[J]. Journal of the American Chemical Society, 1968, 90(14): 3700-3704. |
35 | NORMAN R O C , STOREY P M , WEST P R . Electron spin resonance studies. Part . Reactions of the sulphate radical anion with organic compounds[J]. Journal of the Chemical Society B: Physical Organic, 1970: 1087-1095. |
36 | HAYON E , TREININ A , WILF J . Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. SO2 -, SO3 -, SO4 -, and SO5 - radicals[J]. Journal of the American Chemical Society, 1972, 94(1): 47-57. |
37 | BABU K A , SATHISH K P S , SAMBANDAM A , et al . Sonochemical degradation of Rhodamine B using oxidants, hydrogen peroxide/peroxydisulfate/peroxymonosulfate, with Fe2+ ion: proposed pathway and kinetics[J]. Environmental Engineering Science, 2015, 32(2): 1-12. |
38 | FANG G D , DIONYSIOU D D , WANG Y , et al . Sulfate radical-based degradation of polychlorinated biphenyls: effects of chloride ion and reaction kinetics.[J]. Journal of Hazardous Materials, 2012, 227/228(43): 394-401. |
39 | ISMAIL L , FERRONATO C , FINE L , et al . Elimination of sulfaclozine from water with SO4 ·− radicals: evaluation of different persulfate activation methods[J]. Applied Catalysis B: Environmental, 2016, 201: 573-581. |
40 | DING D , LIU C , JI Y , et al . Mechanism insight of degradation of norfloxacin by magnetite nanoparticles activated persulfate: identification of radicals and degradation pathway[J]. Chemical Engineering Journal, 2017, 308: 330-339. |
41 | FANG G , WU W , LIU C , et al . Activation of persulfate with vanadium species for PCBs degradation: a mechanistic study[J]. Applied Catalysis B: Environmental, 2016, 202: 1-11. |
42 | GAO Y , LI S , LI Y , et al . Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate[J]. Applied Catalysis B: Environmental, 2017, 202: 165-174. |
43 | AHMAD M . Innovative oxidation pathways for the treatment of traditional and emerging contaminants[D]. Washington: Washington State University, 2012. |
44 | ZHANG Y , TRAN H P , HUSSAIN I , et al . Degradation of p-chloroaniline by pyrite in aqueous solutions[J]. Chemical Engineering Journal, 2015, 279: 396-401. |
45 | ZHANG Y , TRAN H P , DU X , et al . Efficient pyrite activating persulfate process for degradation of p-chloroaniline in aqueous systems: a mechanistic study[J]. Chemical Engineering Journal, 2017, 308: 1112-1119. |
46 | LIU M , HOU L , LI Q , et al . Heterogeneous degradation of tetracycline by magnetic Ag/AgCl/modified zeolite X–persulfate system under visible light[J]. RSC Advances, 2016, 6(42): 35216-35227. |
47 | ESKANDARIAN M R , FAZLI M , RASOULIFARD M H , et al . Decomposition of organic chemicals by zeolite-TiO2, nanocomposite supported onto low density polyethylene film under UV-LED powered by solar radiation[J]. Applied Catalysis B: Environmental, 2016, 183: 407-416. |
48 | FERKOUS H , MEROUANI S , HAMDAOUI O , et al . Persulfate-enhanced sonochemical degradation of naphthol blue black in water: evidence of sulfate radical formation.[J]. Ultrasonics Sonochemistry, 2016, 34: 580-587. |
49 | ARSLAN-ALATON I , OLMEZ-HANCI T , KHOEI S , et al . Oxidative degradation of Triton X-45 using zero valent aluminum in the presence of hydrogen peroxide, persulfate and peroxymonosulfate[J]. Catalysis Today, 2017, 280: 199-207. |
50 | PENG H , ZHANG W , LIU L , et al . Degradation performance and mechanism of decabromodiphenyl ether (BDE209) by ferrous-activated persulfate in spiked soil[J]. Chemical Engineering Journal, 2016, 307: 750-755. |
51 | CAI J , ZHOU M , YANG W , et al . Degradation and mechanism of 2,4-dichlorophenoxyacetic acid (2,4-D) by thermally activated persulfate oxidation[J]. Chemosphere, 2018, 212: 784-793. |
52 | GAO H , CHEN J , ZHANG Y , et al . Sulfate radicals induced degradation of Triclosan in thermally activated persulfate system[J]. Chemical Engineering Journal, 2016, 306: 522-530. |
53 | WANG Z , YUAN R , GUO Y , et al . Effects of chloride ions on bleaching of azo dyes by Co2+/oxone reagent: kinetic analysis[J]. Journal of Hazardous Materials, 2011, 190(1/2/3): 1083-1087. |
54 | FAN Y , JI Y , KONG D , et al . Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process[J]. Journal of Hazardous Materials, 2015, 300: 39-47. |
55 | PENG H , ZHANG W , XU L , et al . Oxidation and mechanism of decabromodiphenyl ether (BDE209) by thermally activated persulfate (TAP) in a soil system[J]. Chemical Engineering Journal, 2016, 306: 226-232. |
56 | NIE M , YANG Y , ZHANG Z , et al . Degradation of chloramphenicol by thermally activated persulfate in aqueous solution[J]. Chemical Engineering Journal, 2014, 246: 373-382. |
57 | TAN C , GAO N , YANG D , et al . Degradation of antipyrine by UV, UV/H2O2 and UV/PS[J]. Journal of Hazardous Materials, 2013, 260(18): 1008-1016. |
58 | JAFARI A J , KAKAVANDI B , JAAFARZADEH N , et al . Heterogeneous Fenton-like catalytic oxidation of tetracycline by AC@Fe3O4 as a heterogeneous persulfate activator: adsorption and degradation studies[J]. Journal of Industrial & Engineering Chemistry, 2017, 45: 323-333. |
59 | DUAN X , SUN H , KANG J , et al . Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons[J]. ACS Catalysis, 2015, 5: 4629-4636. |
60 | DUAN X , SU C , ZHOU L , et al . Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds[J]. Applied Catalysis B: Environmental, 2016, 194: 7-15. |
61 | CELYNA K O , WASIU A L , PRINCE A N , et al . Degradation of PFOA by hydrogen peroxide and persulfate activated by iron-modified diatomite[J]. Applied Catalysis B: Environmental, 2016, 192: 253-259. |
62 | HORI H , HAYAKAWA E , EINAGA H , ET AL . Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches[J]. Environmental Science & Technology, 2004, 38(22): 6118-6124. |
63 | LIOU J S C , SZOSTEK B , DERITO C M , et al . Investigating the biodegradability of perfluorooctanoic acid[J]. Chemosphere, 2010, 80(2): 176-183. |
64 | SMITH B A , TEEL A L , WATTS R J . Identification of the reactive oxygen species responsible for carbon tetrachloride degradation in modified Fenton's systems[J]. Environmental Science & Technology, 2004, 38(20): 5465-5469. |
65 | LIU C M , DIAO Z H , HUO W Y , et al . Simultaneous removal of Cu2+ and bisphenol A by a novel biochar-supported zero valent iron from aqueous solution: Synthesis, reactivity and mechanism[J]. Environmental Pollution, 2018, 239: 698-705. |
[1] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[2] | SUN Qianqian, LIU Zhen, LI Rui, ZHANG Xi, YANG Mingde, WU Yulong. Low temperature hydrothermal coupling of ferrous ion activated persulfate to improve the dewatering performance of waste activated sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 595-602. |
[3] | ZHANG Pingping, DING Shuhai, GAO Jingjing, ZHAO Min, YU Haixiang, LIU Yuehong, GU Lin. Carbon quantum dots modified semiconductor composite photocatalysts for degradation of organic pollutants in water [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5487-5500. |
[4] | DUAN Yi, ZOU Ye, ZHOU Shukui, YANG Liu. Progress in the degradation of organic pollutants by H2O2/PMS/PDS activated by transition metal single-atom catalysts [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4147-4158. |
[5] | LI Po, ZHANG Shanshan, SHI Jinqiu, GAO Hang, WANG Mingxin. Remediation of aniline-contaminated groundwater by activated persulfate and its environmental risks [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2753-2760. |
[6] | XU Zetao, CAO Yiting, WANG Qiao, WANG Zhihong. Research progress of peroxymonosulfate activated by solid-phase cobalt-based catalyst in water treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 730-739. |
[7] | XU Mingjun, GUO Zhaochun, LI Li, ZHU Ziqi, ZHANG Qian, HONG Junming. Degradation of azo dyes by sodium percarbonate activated with nanosheet Mn2O3@α-Fe3O4 [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 1043-1053. |
[8] | QI Yabing. Research progress on degradation of antibiotics by activated persulfate oxidation [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6627-6643. |
[9] | LIU Xiaobei, ZHANG Xihua, XIONG Mei, ZHAO He. Analysis on the characteristic organic pollutants from discharge wastewater of spent lithium batteries [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5619-5629. |
[10] | WANG Wenxia, LIU Xiaofeng, CHEN Xi, XU Yanhong, MENG Zhenbang, ZHENG Junxia, AN Taicheng. Research advances of synthesis and applications of porous g-C3N4-based photocatalyst [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 300-309. |
[11] | ZHANG Xuan, SONG Xiaosan, ZHAO Po, DONG Yuanhua, LIU Yun. A critical review of advanced oxidation technology to treat 1,4-dioxane pollution [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 380-388. |
[12] | ZENG Shangsheng, YANG Yucheng, ZHANG Na, ZHANG Xueqin, YE Jing, HUANG Yayan, XIAO Meitian. Enhanced ozone degradation of the p-nitrophenol wastewater by rotating-microbubble reactor [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 4091-4099. |
[13] | SUN Liuxin, WANG Peiming, YANG Junhao, LIU Qing, CUI Mifen, QIAO Xu. Research progress on the effect of ionic strength on the removal of organic pollutants from wastewater by adsorbents [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3239-3257. |
[14] | HAN Wanling, QIAN Yongxing, ZHANG Huining, CHEN Jiwei, MA Jianqing, ZHANG Kefeng. Review on removal methods of short-chain chlorinated paraffins in environment [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3444-3454. |
[15] | Yanhong LUO, Xiuping YUE, Yueru JIANG, Bowei ZHAO, Yanjuan GAO, Yanqing DUAN. Recent progress of advanced oxidation processes in indole degradation [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 1025-1034. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |