Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (2): 1043-1053.DOI: 10.16085/j.issn.1000-6613.2021-0556
• Resources and environmental engineering • Previous Articles Next Articles
XU Mingjun1,2(), GUO Zhaochun3, LI Li1,2, ZHU Ziqi1,2, ZHANG Qian1,2, HONG Junming1,2()
Received:
2021-03-19
Revised:
2021-04-14
Online:
2022-02-23
Published:
2022-02-05
Contact:
HONG Junming
徐铭骏1,2(), 郭兆春3, 李立1,2, 朱紫琦1,2, 张倩1,2, 洪俊明1,2()
通讯作者:
洪俊明
作者简介:
徐铭骏(1998—),男,硕士研究生,主要研究方向为水处理高级氧化。E-mail:基金资助:
CLC Number:
XU Mingjun, GUO Zhaochun, LI Li, ZHU Ziqi, ZHANG Qian, HONG Junming. Degradation of azo dyes by sodium percarbonate activated with nanosheet Mn2O3@α-Fe3O4[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 1043-1053.
徐铭骏, 郭兆春, 李立, 朱紫琦, 张倩, 洪俊明. 纳米片状Mn2O3@α-Fe3O4活化过碳酸盐降解偶氮染料[J]. 化工进展, 2022, 41(2): 1043-1053.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0556
催化剂投加量/g·L-1 | K/min-1 | R2 |
---|---|---|
0.1 | 0.0078 | 0.926 |
0.2 | 0.0210 | 0.973 |
0.3 | 0.0272 | 0.953 |
0.4 | 0.0303 | 0.955 |
催化剂投加量/g·L-1 | K/min-1 | R2 |
---|---|---|
0.1 | 0.0078 | 0.926 |
0.2 | 0.0210 | 0.973 |
0.3 | 0.0272 | 0.953 |
0.4 | 0.0303 | 0.955 |
过碳酸钠浓度/mmol·L-1 | K/min-1 | R2 |
---|---|---|
1 | 0.0272 | 0.953 |
2 | 0.0254 | 0.953 |
3 | 0.0235 | 0.900 |
4 | 0.0025 | 0.986 |
过碳酸钠浓度/mmol·L-1 | K/min-1 | R2 |
---|---|---|
1 | 0.0272 | 0.953 |
2 | 0.0254 | 0.953 |
3 | 0.0235 | 0.900 |
4 | 0.0025 | 0.986 |
pH | K/min-1 | R2 |
---|---|---|
3 | 0.0272 | 0.953 |
5 | 0.0038 | 0.961 |
7 | 0.0025 | 0.985 |
9 | 0.0006 | 0.936 |
pH | K/min-1 | R2 |
---|---|---|
3 | 0.0272 | 0.953 |
5 | 0.0038 | 0.961 |
7 | 0.0025 | 0.985 |
9 | 0.0006 | 0.936 |
RBK5浓度/mmol·L-1 | K/min-1 | R2 |
---|---|---|
5 | 0.0522 | 0.964 |
10 | 0.0272 | 0.953 |
20 | 0.0191 | 0.934 |
30 | 0.0093 | 0.936 |
RBK5浓度/mmol·L-1 | K/min-1 | R2 |
---|---|---|
5 | 0.0522 | 0.964 |
10 | 0.0272 | 0.953 |
20 | 0.0191 | 0.934 |
30 | 0.0093 | 0.936 |
1 | WU J N, WANG T W. Ozonation of aqueous azo dye in a semi-batch reactor[J]. Water Research, 2001, 35(4): 1093-1099. |
2 | BANERJEE P, DASGUPTA S, DE S. Removal of dye from aqueous solution using a combination of advanced oxidation process and nanofiltration[J]. Journal of Hazardous Materials, 2007, 140(1/2): 95-103. |
3 | 王艳, 宋祖德, 冯明明, 等. 铁氧化物联合低含量亚铁离子催化H2O2降解偶氮染料活性黑5[J]. 水处理技术, 2014, 40(2): 35-38. |
WANG Yan, SONG Zude, FENG Mingming, et al. Degradation of azo dye reactive black 5 by low ferrous ions concentration catalyzed H2O2 in combination with waste iron oxide[J]. Technology of Water Treatment, 2014, 40(2): 35-38. | |
4 | HUNG C M, HUANG C P, CHEN C W, et al. Activation of percarbonate by water treatment sludge-derived biochar for the remediation of PAH-contaminated sediments[J]. Environmental Pollution, 2020, 265: 114914. |
5 | FU X R, GU X G, LU S G, et al. Benzene depletion by Fe2+-catalyzed sodium percarbonate in aqueous solution[J]. Chemical Engineering Journal, 2015, 267: 25-33. |
6 | VIISIMAA M, GOI A. Use of hydrogen peroxide and percarbonate to treat chlorinated aromatic hydrocarbon-contaminated soil[J]. Journal of Environmental Engineering and Landscape Management, 2014, 22(1): 30-39. |
7 | SAJJADI S, KHATAEE A, DARVISHI CHESHMEH SOLTANI R, et al. Implementation of magnetic Fe3O4@ZIF-8 nanocomposite to activate sodium percarbonate for highly effective degradation of organic compound in aqueous solution[J]. Journal of Industrial and Engineering Chemistry, 2018, 68: 406-415. |
8 | DANISH M, GU X G, LU S G, et al. Efficient transformation of trichloroethylene activated through sodium percarbonate using heterogeneous zeolite supported nano zero valent iron-copper bimetallic composite[J]. Chemical Engineering Journal, 2017, 308: 396-407. |
9 | VIGNESH R H, SANKAR K V, AMARESH S, et al. Synthesis and characterization of MnFe2O4 nanoparticles for impedometric ammonia gas sensor[J]. Sensors and Actuators B: Chemical, 2015, 220: 50-58. |
10 | 李立, 吴丽颖, 董正玉, 等. 高晶度Mn-Fe LDH催化剂活化过一硫酸盐降解偶氮染料RBK5[J]. 环境科学, 2020, 41(6): 2736-2745. |
LI Li, WU Liying, DONG Zhengyu, et al. Degradation of RBK5 by high crystallinity Mn-Fe LDH catalyst activating peroxymonosulfate[J]. Environmental Science, 2020, 41(6): 2736-2745. | |
11 | 佘月城, 董正玉, 吴丽颖, 等. MnFe2O4活化过一硫酸盐降解废水中LAS[J]. 中国环境科学, 2019, 39(8): 3323-3331. |
SHE Yuecheng, DONG Zhengyu, WU Liying, et al. Degradation of LAS in wastewater by peroxymonosulfate activated by MnFe2O4[J]. China Environmental Science, 2019, 39(8): 3323-3331. | |
12 | DU J K, XIAO G F, XI Y X, et al. Periodate activation with manganese oxides for sulfanilamide degradation[J]. Water Research, 2020, 169: 115278. |
13 | ZHENG H, BAO J G, HUANG Y, et al. Efficient degradation of atrazine with porous sulfurized Fe2O3 as catalyst for peroxymonosulfate activation[J]. Applied Catalysis B: Environmental, 2019, 259: 118056. |
14 | CHEN L, JIANG X, XIE R Z, et al. A novel porous biochar-supported Fe-Mn composite as a persulfate activator for the removal of acid red 88[J]. Separation and Purification Technology, 2020, 250: 117232. |
15 | CHEN Z Q, WANG L Y, XU H D, et al. Efficient heterogeneous activation of peroxymonosulfate by modified CuFe2O4 for degradation of tetrabromobisphenol A[J]. Chemical Engineering Journal, 2020, 389: 124345. |
16 | WAN Z, WANG J L. Degradation of sulfamethazine antibiotics using Fe3O4-Mn3O4 nanocomposite as a Fenton-like catalyst[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(4): 874-883. |
17 | MA Z, ZHAO D, CHANG Y, et al. Synthesis of MnFe2O4@Mn-Co oxide core-shell nanoparticles and their excellent performance for heavy metal removal[J]. Dalton Transactions, 2013, 42(39): 14261-14267. |
18 | MAGAGULA B, NHLAPO N, FOCKE W W. Mn2Al-LDH- and Co2Al-LDH-stearate as photodegradants for LDPE film[J]. Polymer Degradation and Stability, 2009, 94(6): 947-954. |
19 | WANG G, ZHAO D Y, KOU F Y, et al. Removal of norfloxacin by surface Fenton system(MnFe2O4/H2O2): kinetics, mechanism and degradation pathway[J]. Chemical Engineering Journal, 2018, 351: 747-755. |
20 | XU X J, YANG Y, JIA Y F, et al. Heterogeneous catalytic degradation of 2,4-dinitrotoluene by the combined persulfate and hydrogen peroxide activated by the as-synthesized Fe-Mn binary oxides[J]. Chemical Engineering Journal, 2019, 374: 776-786. |
21 | WU L Y, YU Y B, ZHANG Q, et al. A novel magnetic heterogeneous catalyst oxygen-defective CoFe2O4-x for activating peroxymonosulfate[J]. Applied Surface Science, 2019, 480: 717-726. |
22 | WU L Y, ZHANG Q, HONG J M, et al. Degradation of bisphenol A by persulfate activation via oxygen vacancy-rich CoFe2O4-x[J]. Chemosphere, 2019, 221: 412-422. |
23 | 王艳, 尹超, 戴明星, 等. Fe/Mn/Al2O3催化H2O2降解偶氮染料废水的研究[J]. 应用化工, 2013, 42(11): 2002-2004. |
WANG Yan, YIN Chao, DAI Mingxing, et al. Degradation of azo dyes wastewater by Fe/Mn/Al2O3 catalytic H2O2[J]. Applied Chemical Industry, 2013, 42(11): 2002-2004. | |
24 | LYU Y C, LYU S G, TANG P, et al. Degradation of trichloroethylene in aqueous solution by sodium percarbonate activated with Fe(Ⅱ)-citric acid complex in the presence of surfactant Tween-80[J]. Chemosphere, 2020, 257: 127223. |
25 | 徐劼, 王琳, 陈家斌, 等. 磁性Fe3O4-CuO非均相活化过碳酸钠降解AO7[J]. 环境科学, 2020, 41(4): 1734-1742. |
XU Jie, WANG Lin, CHEN Jiabin, et al. Degradation of AO7 with magnetic Fe3O4-CuO heterogeneous catalyzed sodium percarbonate system[J]. Environmental Science, 2020, 41(4): 1734-1742. | |
26 | FU X R, GU X G, LU S G, et al. Enhanced degradation of benzene in aqueous solution by sodium percarbonate activated with chelated- Fe(Ⅱ)[J]. Chemical Engineering Journal, 2016, 285: 180-188. |
27 | LIN K Y A, LIN J T, LIN Y F. Heterogeneous catalytic activation of percarbonate by ferrocene for degradation of toxic amaranth dye in water[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78: 144-149. |
28 | GAO J, DUAN X D, O’SHEA K, et al. Degradation and transformation of bisphenol A in UV/sodium percarbonate: dual role of carbonate radical anion[J]. Water Research, 2020, 171: 115394. |
29 | LIANG H Y, ZHANG Y Q, HUANG S B, et al. Oxidative degradation of p-chloroaniline by copper oxidate activated persulfate[J]. Chemical Engineering Journal, 2013, 218: 384-391. |
30 | WAN Z, WANG J L. Degradation of sulfamethazine using Fe3O4-Mn3O4/reduced graphene oxide hybrid as Fenton-like catalyst[J]. Journal of Hazardous Materials, 2017, 324: 653-664. |
31 | 于永波, 黄湾, 董正玉, 等. N原子杂化石墨烯高效活化过一硫酸盐降解RBk5染料废水[J]. 环境科学, 2019, 40(7): 3154-3161. |
YU Yongbo, HUANG Wan, DONG Zhengyu, et al. Degradation of RBk5 with peroxymonosulfate efficiently activated by N-doped graphene[J]. Environmental Science, 2019, 40(7): 3154-3161. | |
32 | LI Z, LUO S Q, YANG Y, et al. Highly efficient degradation of trichloroethylene in groundwater based on peroxymonosulfate activation by bentonite supported Fe/Ni bimetallic nanoparticle[J]. Chemosphere, 2019, 216: 499-506. |
33 | DONG Z Y, ZHANG Q, CHEN B Y, et al. Oxidation of bisphenol A by persulfate via Fe3O4-α-MnO2 nanoflower-like catalyst: mechanism and efficiency[J]. Chemical Engineering Journal, 2019, 357: 337-347. |
34 | Abdellatif EL-GHENYMY, CENTELLAS Francesc, GARRIDO Jose Antonio, et al. Decolorization and mineralization of Orange G azo dye solutions by anodic oxidation with a boron-doped diamond anode in divided and undivided tank reactors[J]. Electrochimica Acta, 2014, 130: 568-576. |
35 | CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. |
36 | SONI B D, RUPARELIA J P. Decolourization and mineralization of reactive black-5 with transition metal oxide coated electrodes by electrochemical oxidation[J]. Procedia Engineering, 2013, 51: 335-341. |
[1] | WANG Yunfei, QIN Rui, ZHENG Lijun, LI Yan, LI Qingping. Research progress of rotating packed bed simulation through CFD method [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 1-9. |
[2] | HUANG Yiping, LI Ting, ZHENG Longyun, QI Ao, CHEN Zhenglin, SHI Tianhao, ZHANG Xinyu, GUO Kai, HU Meng, NI Zeyu, LIU Hui, XIA Miao, ZHU Kai, LIU Chunjiang. Hydrodynamics and mass transfer characteristics of a three-stage internal loop airlift reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 175-188. |
[3] | SUN Jipeng, HAN Jing, TANG Yangchao, YAN Bowen, ZHANG Jieyao, XIAO Ping, WU Feng. Numerical simulation and optimization of operating parameters of sulfur wet molding process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 189-196. |
[4] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[5] | DONG Jiayu, WANG Simin. Experimental on ultrasound enhancement of para-xylene crystallization characteristics and regulation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4504-4513. |
[6] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
[7] | XIANG Shuo, LU Peng, SHI Weinian, YANG Xin, HE Yan, ZHU Liye, KONG Xiangwei. Controllable and large-scale preparation of two-dimensional WS2 nanosheet and its tribological properties as lubricant additives in lithium grease [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4783-4790. |
[8] | BU Zhicheng, JIAO Bo, LIN Haihua, SUN Hongyuan. Review on computational fluid dynamics (CFD) simulation and advances in pulsating heat pipes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181. |
[9] | LI Ruidong, HUANG Hui, TONG Guohu, WANG Yueshe. Hygroscopic properties and corrosion behavior of ammonium salt in a crude oil distillation column [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2809-2818. |
[10] | ZHANG Kai, JIN Hanyu, LIU Siyu, WANG Shuai. Simulation of mass transfer process under the bubble interaction in bubbling fluidization [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2828-2835. |
[11] | YANG Xuzhao, LI Qing, YUAN Kangkang, ZHANG Yingying, HAN Jingli, WU Shide. Thermodynamic properties of Gemini ionic liquid based deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3123-3129. |
[12] | MA Runmei, YANG Haichao, LI Zhengda, LI Shuangxi, ZHAO Xiang, ZHANG Guoqing. Influence analysis of coating on deformation and frictional wear of mechanical seal end for high-speed bearing cavity [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1688-1697. |
[13] | ZHANG Chengsong, ZHANG Jing, GONG Bin, LI Mingyang, YUAN Jiaxin, LI Hongye. Vibration characteristics of self-priming jet flexible impeller [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1728-1738. |
[14] | WANG Xiaoyue, ZHANG Weimin, YAO Zhengyang, GUO Xiaohong, LI Congming. Research progress of reverse water gas shift reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1583-1594. |
[15] | SUN Xiao, ZHU Guangtao, PEI Aiguo. Industrialization and research progress of hydrogen liquefier [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1103-1117. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |