Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (12): 4586-4595.DOI: 10.16085/j.issn.1000-6613.2018-0473
Previous Articles Next Articles
YAN Ting, WANG Wenhuan, WANG Chengyao
Received:
2018-03-08
Revised:
2018-05-18
Online:
2018-12-05
Published:
2018-12-05
闫霆, 王文欢, 王程遥
通讯作者:
闫霆(1981-),男,博士研究生,研究方向为热能储存。
作者简介:
闫霆(1981-),男,博士研究生,研究方向为热能储存。E-mail:yt81725@126.com。
基金资助:
CLC Number:
YAN Ting, WANG Wenhuan, WANG Chengyao. Research situation and progress on chemical heat storage technology[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4586-4595.
闫霆, 王文欢, 王程遥. 化学储热技术的研究现状及进展[J]. 化工进展, 2018, 37(12): 4586-4595.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-0473
[1] YAN T, WANG R Z, LI T X, et al. A review of promising candidate reactions for chemical heat storage[J]. Renewable and Sustainable Energy Reviews, 2015, 43:13-31. [2] TANAKA T, SAKUTA K, KAMIMOTO M, et al. Solar thermal energy storage using heat of dilution:analysis of heat generation in multistage mixing column[J]. Energy Conversion, 1978, 18(2):57-65. [3] WYMAN C, CASTLE J, KREITH F. A review of collector and energy storage technology for intermediate temperature applications[J]. Solar Energy, 1980, 24(6):517-540. [4] MEZZINA A. The US chemical heat pump program——an overview[J]. International Journal of Ambient Energy, 1982, 3(3):137-140. [5] GRÄNFORS A, NILSSON B, JERNQVIST Å, et al. Dynamic simulation of an absorption heat transformer incorporated with an evaporation plant[J]. Computers & Chemical Engineering, 1997, 21:S715-S720. [6] STEPHAN K, SCHMITT M, HEBECKER D, et al. Dynamics of a heat transformer working with the mixture NaOH-H2O[J]. International Journal of Refrigeration, 1997, 20(7):483-495. [7] WEBER R, DORER V. Long-term heat storage with NaOH[J]. Vacuum, 2008, 82(7):708-716. [8] FUMEY B, WEBER R, GANTENBEIN P, et al. Experience on the development of a thermo-chemical storage system based on aqueous sodium hydroxide[J]. Energy Procedia, 2014, 57:2370-2379. [9] FUMEY B, WEBER R, GANTENBEIN P, et al. Operation results of a closed sorption heat storage prototype[J]. Energy Procedia, 2015, 73:324-330. [10] 杨启超, 张晓灵, 王馨, 等. 吸收式化学蓄能的研究综述[J]. 科学通报, 2011, 56(9):669-678. YANG Q C, ZHANG X L, WANG X, et al. Review on absorption thermal energy storage technologies[J]. Chinese Science Bulletin (Chinese Version), 2011, 56(9):669-678. [11] PARHAM K, KHAMOOSHI M, TEMATIO DBK, et al. Absorption heat transformers:a comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2014, 34:430-452. [12] RIVERA W, BEST R, CARDOSO MJ, et al. A review of absorption heat transformers[J]. Applied Thermal Engineering, 2015, 91:654-670. [13] N'TSOUKPOE K E, LE PIERRÈS N, LUO L. Experimentation of a LiBr-H2O absorption process for long-term solar thermal storage:prototype design and first results[J]. Energy, 2013, 53:179-198. [14] N'TSOUKPOE K E, PERIER-MUZET M, LE PIERRÈS N, et al. Thermodynamic study of a LiBr-H2O absorption process for solar heat storage with crystallisation of the solution[J]. Solar Energy, 2014, 104:2-15. [15] PERIER-MUZET M, LE PIERRES N. Modeling and analysis of energetic and exergetic efficiencies of a LiBr/H2O absorption heat storage system for solar space heating in buildings[J]. Energy Efficiency, 2016, 9(2):281-299. [16] N'TSOUKPOE KE, LE PIERRÈS N, LUO L. Numerical dynamic simulation and analysis of a lithium bromide/water long-term solar heat storage system[J]. Energy, 2012, 37(1):346-358. [17] HOU Y, VIDU R, STROEVE P. Solar energy storage methods[J]. Industrial & Engineering Chemistry Research, 2011, 50(15):8954-8964. [18] VAN ESSEN V M, BAKKER M, SCHUITEMA R, et al. Materials for thermochemical storage:characterization of magnesium sulfate[C]//EUROSUN:1st International Conference on Solar Heating, Cooling and Buildings. Lisbon, Portugal:Energy Research Centre of the Netherlands, 2009. [19] HONGOIS S, KUZNIK F, STEVENS P, et al. Development and characterisation of a new MgSO4 zeolite composite for long-term thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2011, 95(7):1831-1837. [20] LI T X, XU J X, YAN T, et al. Development of sorption thermal battery for low-grade waste heat recovery and combined cold and heat energy storage[J]. Energy, 2016, 107:347-359. [21] 闫霆, 李卉, 马良, 等. 基于热化学再吸附变温原理的低品位热能升温储能特性[J]. 上海交通大学学报, 2013(11):1717-1722. YAN T, LI H, MA L, et al. Integrated energy storage and energy upgrade of low-grade thermal energy based on thermochemical resorption heat transformer[J]. Journal of Shanghai Jiao Tong University, 2013(11):1717-1722. [22] LI T X, WANG R Z, YAN T. Solid-gas thermochemical sorption thermal battery for solar cooling and heating energy storage and heat transformer[J]. Energy, 2015, 84:745-758. [23] HATAMACHI T, KODAMA T, ISOBE Y. Carbonate composite catalyst with high-temperature thermal storage for use in solar tubular reformers[J]. Journal of Solar Energy Engineering, 2004, 127(3):396-400. [24] CHANG J-S, PARK S-E, CHON H. Catalytic activity and coke resistance in the carbon dioxide reforming of methane to synthesis gas over zeolite-supported Ni catalysts[J]. Applied Catalysis A:General, 1996, 145(1):111-124. [25] GOKON N, INUTA S-I, YAMASHITA S, et al. Double-walled reformer tubes using high-temperature thermal storage of molten-salt/MgO composite for solar cavity-type reformer[J]. International Journal of Hydrogen Energy, 2009, 34(17):7143-7154. [26] BERMAN A, KARN RK, EPSTEIN M. A new catalyst system for high-temperature solar reforming of methane[J]. Energy & Fuels, 2006, 20(2):455-462. [27] KODAMA T, ISOBE Y, KONDOH Y, et al. Ni/ceramic/molten-salt composite catalyst with high-temperature thermal storage for use in solar reforming processes[J]. Energy, 2004, 29(5/6):895-903. [28] ANIKEEV V I, BOBRIN A S, ORTNER J, et al. Catalytic thermochemical reactor/receiver for solar reforming of natural gas:design and performance[J]. Solar Energy, 1998, 63(2):97-104. [29] GOKON N, OSAWA Y, NAKAZAWA D, et al. Kinetics of CO2 reforming of methane by catalytically activated metallic foam absorber for solar receiver-reactors[J]. International Journal of Hydrogen Energy, 2009, 34(4):1787-1800. [30] GOKON N, YAMAWAKI Y, NAKAZAWA D, et al. Ni/MgO-Al2O3 and Ni-Mg-O catalyzed SiC foam absorbers for high temperature solar reforming of methane[J]. International Journal of Hydrogen Energy, 2010, 35(14):7441-7453. [31] GOKON N, YAMAWAKI Y, NAKAZAWA D, et al. Kinetics of methane reforming over Ru/γ-Al2O3-catalyzed metallic foam at 650-900℃ for solar receiver-absorbers[J]. International Journal of Hydrogen Energy, 2011, 36(1):203-215. [32] XU Z, ZHEN M, BI Y, ZHEN K. Catalytic properties of Ni modified hexaaluminates LaNiyAl12-yO19-δ for CO2 reforming of methane to synthesis gas[J]. Applied Catalysis A:General, 2000, 198(1/2):267-273. [33] EDWARDS J H, DO K T, MAITRA A M, et al. The use of solar-based CO2/CH4 reforming for reducing greenhouse gas emissions during the generation of electricity and process heat[J]. Energy Conversion and Management, 1996, 37(6):1339-1344. [34] KODAMA T, KIYAMA A, SHIMIZU K I. Catalytically activated metal foam absorber for light-to-chemical energy conversion via solar reforming of Methane[J]. Energy & Fuels, 2003, 17(1):13-17. [35] KODAMA T, KOYANAGI T, SHIMIZU T, et al. CO2 reforming of methane in a molten carbonate salt bath for use in solar thermochemical processes[J]. Energy & Fuels, 2001, 15(1):60-65. [36] WÖRNER A, TAMME R. CO2 reforming of methane in a solar driven volumetric receiver-reactor[J]. Catalysis Today, 1998, 46(2/3):165-174. [37] CARDEN P O. Energy corradiation using the reversible ammonia reaction[J]. Solar Energy, 1977, 19(4):365-378. [38] WILLIAMS O M. Design and cost analysis for an ammonia-based solar thermochemical cavity absorber[J]. Solar Energy, 1980, 24(3):255-263. [39] WILLIAMS O M. Ammonia thermochemical energy transport in a distributed collector solar thermal power plant[J]. Solar Energy, 1981, 27(3):205-214. [40] LOVEGROVE K, LUZZI A. Endothermic reactors for an ammonia based thermochemical solar energy storage and transport system[J]. Solar Energy, 1996, 56(4):361-371. [41] LOVEGROVE K. High pressure ammonia dissociation experiments for solar energy transport and storage[J]. International Journal of Energy Research, 1996, 20(11):965-978. [42] LUZZI A, LOVEGROVE K. A solar thermochemical power plant using ammonia as an attractive option for greenhouse-gas abatement[J]. Energy, 1997, 22(2):317-325. [43] KREETZ H, LOVEGROVE K. Theoretical analysis and experimental results of a 1 kWchem ammonia synthesis reactor for a solar thermochemical energy storage system[J]. Solar Energy, 1999, 67(4/5/6):287-296. [44] LOVEGROVE K, LUZZI A, KREETZ H. A solar-driven ammonia-based thermochemical energy storage system[J]. Solar Energy, 1999, 67(4/5/6):309-316. [45] LUZZI A, LOVEGROVE K, FILIPPI E, et al. Techno-economic analysis of a 10 MWe solar thermal power plant using ammonia-based thermochemical energy storage[J]. Solar Energy, 1999, 66(2):91-101. [46] LOVEGROVE K, LUZZI A, MCCANN M, et al. Exergy analysis of ammonia-based solar thermochemical power systems[J]. Solar Energy, 1999, 66(2):103-115. [47] KREETZ H, LOVEGROVE K, LUZZI A. Maximizing thermal power output of an ammonia synthesis reactor for a solar thermochemical energy storage system[J]. Journal of Solar Energy Engineering, 2000, 123(2):75-82. [48] KREETZ H, LOVEGROVE K. Exergy analysis of an ammonia synthesis reactor in a solar thermochemical power system[J]. Solar Energy, 2002, 73(3):187-194. [49] LOVEGROVE K, LUZZI A, SOLDIANI I, et al. Developing ammonia based thermochemical energy storage for dish power plants[J]. Solar Energy, 2004, 76(1/2/3):331-337. [50] DUNN R, LOVEGROVE K, BURGESS G. A review of ammonia-based thermochemical energy storage for concentrating solar power[J]. Proceedings of the IEEE, 2012, 100(2):391-400. [51] KITIKIATSOPHON W, PIUMSOMBOON P. Dynamic simulation and control of an isopropanol-acetone-hydrogen chemical heat pump[J]. Science Asia, 2004, 30:135-147. [52] KLINSODA I, PIUMSOMBOON P. Isopropanol-acetone-hydrogen chemical heat pump:a demonstration unit[J]. Energy Conversion and Management, 2007, 48(4):1200-1207. [53] GUO J, HUAI X, LI X, et al. Performance analysis of isopropanol-acetone-hydrogen chemical heat pump[J]. Applied Energy, 2012, 93:261-267. [54] GUO J, HUAI X, XU M. Study on isopropanol-acetone-hydrogen chemical heat pump of storage type[J]. Solar Energy, 2014, 110:684-690. [55] XU M, XIN F, LI X, et al. Ultrasound promoted catalytic liquid-phase dehydrogenation of isopropanol for isopropanol-acetone-hydrogen chemical heat pump[J]. Ultrasonics Sonochemistry, 2015, 23:66-74. [56] FELDERHOFF M, BOGDANOVIC B. High temperature metal hydrides as heat storage materials for solar and related applications[J]. International Journal of Molecular Sciences, 2009, 10(1):325-344. [57] BOGDANOVIC B, RITTER A, SPLIETHOFF B, et al. A process steam generator based on the high temperature magnesium hydride/magnesium heat storage system[J]. International Journal of Hydrogen Energy, 1995, 20(10):811-822. [58] FANG Z Z, ZHOU C, FAN P, et al. Metal hydrides based high energy density thermal battery[J]. Journal of Alloys and Compounds, 2015, 645(s1):S184-S189. [59] BOGDANOVIC B, REISER A, SCHLICHTE K, et al. Thermodynamics and dynamics of the Mg-Fe-H system and its potential for thermochemical thermal energy storage[J]. Journal of Alloys and Compounds, 2002, 345(1/2):77-89. [60] KYAW K, MATSUDA H, HASATANI M. Applicability of carbonation/decarbonation reactions to high-temperature thermal energy storage and temperature upgrading[J]. Journal of Chemical Engineering of Japan, 1996, 29(1):119-125. [61] KYAW K, SHIBATA T, WATANABE F, et al. Applicability of zeolite for CO2 storage in a CaO-CO2 high temperature energy storage system[J]. Energy Conversion and Management, 1997, 38(10):1025-1033. [62] KATO Y, WATANABE Y, YOSHIZAWA Y. Application of inorganic oxide/carbon dioxide reaction system to a chemical heat pump[C]//IECEC 96:Proceedings of the 31st Intersociety Energy Conversion Engineering Conference. Washington, United States, 1996:763-768. DOI:10.1109/IECEC.1996.553793. [63] KATO Y, YAMADA M, KANIE T, et al. Calcium oxide/carbon dioxide reactivity in a packed bed reactor of a chemical heat pump for high-temperature gas reactors[J]. Nuclear Engineering and Design, 2001, 210(1/2/3):1-8. [64] FORSTER M. Theoretical investigation of the system SnOx/Sn for the thermochemical storage of solar energy[J]. Energy, 2004, 29(5/6):789-799. [65] CARRILLO A J, SASTRE D, SERRANO D P, et al. Revisiting the BaO2/BaO redox cycle for solar thermochemical energy storage[J]. Physical Chemistry Chemical Physics, 2016, 18(11):8039-8048. [66] ABU-HAMED T, KARNI J, EPSTEIN M. The use of boron for thermochemical storage and distribution of solar energy[J]. Solar Energy, 2007, 81(1):93-101. [67] BLOCK T, KNOBLAUCH N, SCHMÜCKER M. The cobalt-oxide/iron-oxide binary system for use as high temperature thermochemical energy storage material[J]. Thermochimica Acta, 2014, 577:25-32. [68] CARRILLO A J, SERRANO D P, PIZARRO P, et al. Thermochemical heat storage based on the Mn2O3/Mn3O4 redox couple:influence of the initial particle size on the morphological evolution and cyclability[J]. Journal of Materials Chemistry A, 2014, 2(45):19435-19443. [69] CARRILLO A J, SERRANO D P, PIZARRO P, et al. Improving the thermochemical energy storage performance of the Mn2O3/Mn3O4 redox couple by the incorporation of iron[J]. ChemSusChem, 2015, 8(11):1947-1954. [70] FRITSCH S, NAVROTSKY A. Thermodynamic properties of manganese oxides[J]. Journal of the American Ceramic Society, 1996, 79(7):1761-1768. [71] FUJIMOTO S, BILGEN E, OGURA H. Dynamic simulation of CaO/Ca(OH)2 chemical heat pump systems[J]. Exergy(An International Journal), 2002, 2(1):6-14. [72] PARDO P, ANXIONNAZ-MINVIELLE Z, ROUGÉ S, et al. Ca(OH)2/CaO reversible reaction in a fluidized bed reactor for thermochemical heat storage[J]. Solar Energy, 2014, 107:605-616. [73] MASTRONARDO E, BONACCORSI L, KATO Y, et al. Efficiency improvement of heat storage materials for MgO/H2O/Mg(OH)2 chemical heat pumps[J]. Applied Energy, 2016, 162:31-39. [74] ZAMENGO M, RYU J, KATO Y. Magnesium hydroxide-expanded graphite composite pellets for a packed bed reactor chemical heat pump[J]. Applied Thermal Engineering, 2013, 61(2):853-858. [75] KIM S T, RYU J, KATO Y. Reactivity enhancement of chemical materials used in packed bed reactor of chemical heat pump[J]. Progress in Nuclear Energy, 2011, 53(7):1027-1033. [76] KIM S T, RYU J, KATO Y. The optimization of mixing ratio of expanded graphite mixed chemical heat storage material for magnesium oxide/water chemical heat pump[J]. Applied Thermal Engineering, 2014, 66(1/2):274-281. [77] MYAGMARJAV O, RYU J, KATO Y. Lithium bromide-mediated reaction performance enhancement of a chemical heat-storage material for magnesium oxide/water chemical heat pumps[J]. Applied Thermal Engineering, 2014, 63(1):170-176. [78] SHKATULOV A, RYU J, KATO Y, et al. Composite material "Mg(OH)2/vermiculite":a promising new candidate for storage of middle temperature heat[J]. Energy, 2012, 44(1):1028-1034. [79] KATO Y, TAKAHASHI R, SEKIGUCHI T, et al. Study on medium-temperature chemical heat storage using mixed hydroxides[J]. International Journal of Refrigeration, 2009, 32(4):661-666. |
[1] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[2] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[3] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[4] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[5] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[6] | XU Chenyang, DU Jian, ZHANG Lei. Chemical reaction evaluation based on graph network [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 205-212. |
[7] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[8] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[9] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[10] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[11] | LYU Chengyuan, ZHANG Han, YANG Mingwang, DU Jianjun, FAN Jiangli. Recent advances of dioxetane-based afterglow system for bio-imaging [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4108-4122. |
[12] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[13] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
[14] | YU Jingwen, SONG Luna, LIU Yanchao, LYU Ruidong, WU Mengmeng, FENG Yu, LI Zhong, MI Jie. An indole-bearing hypercrosslinked polymer In-HCP for iodine adsorption from water [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3674-3683. |
[15] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |