[1] SEO Y K,YOON J W,LEE J S,et al. Energy-efficient dehumidification over hierachically porous metal-organic frameworks as advanced water adsorbents[J]. Advanced Materials,2012,24(6):806-810.
[2] MA S,ZHOU H C. Gas storage in porous metal-organic frameworks for clean energy applications[J]. Chemical Communications,2010,46(1):44-53.
[3] SUMIDA K,ROGOW D L,MASON J A,et al. Carbon dioxide capture in metal-organic frameworks[J]. Chemical Reviews,2011,112(2):724-781.
[4] JEONG N C,SAMANTA B,LEE C Y,et al. Coordination-chemistry control of proton conductivity in the iconic metal-organic framework material HKUST-1[J]. Journal of the American Chemical Society,2011,134(1):51-54.
[5] 仲崇立,刘大欢,阳庆元,著. 金属有机骨架材料的构效关系及设计[M] 北京:科学出版社,2013. ZHONG C L,LIU D H,YANG Q Y. Structure-activity relationship and design of metal organic framework materials [M] Beijing:Science Press,2013.
[6] CHUI S S Y,LO S M F,CHARMANT J P H,et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n[J]. Science,1999,283(5405):1148-1150.
[7] SCHLICHTE K,KRATZKE T,KASKEL S. Improved synthesis,thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2[J]. Microporous and Mesoporous Materials,2004,73(1):81-88
[8] FÉREY G,MELLOT-DRAZNIEKS C,SERRE C,et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science,2005,309(5743):2040-2042.
[9] LLEWELLYN P L,BOURRELLY S,SERRE C,et al. High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101[J]. Langmuir,2008,24(14):7245-7250.
[10] HWANG Y K,HONG D Y,CHANG J S,et al. Amine grafting on coordinatively unsaturated metal centers of MOFs:consequences for catalysis and metal encapsulation[J]. Angewandte Chemie International Edition,2008,47(22):4144-4148.
[11] LOISEAU T,SERRE C,HUGUENARD C,et al. A rationale for the large breathing of the porous aluminum terephthalate(MIL-53)upon hydration[J]. Chemistry——A European Journal,2004,10(6):1373-1382.
[12] ZHANG Y,LUCIER B E G,HUANG Y. Deducing CO2 motion,adsorption locations and binding strengths in a flexible metal-organic framework without open metal sites[J]. Physical Chemistry Chemical Physics,2016,18(12):8327-8341.
[13] CHO H Y,YANG D A,KIM J,et al. CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating[J]. Catalysis Today,2012,185(1):35-40.
[14] PALOMINO C C,GÓMEZ-POZUELO G,NACHTIGALL P,et al. Metal Organic Frameworks M-MOF-74 and M-MIL-100:comparison of textural,acidic and catalytic properties[J]. ChemPlusChem,2016,81(8):828-835.
[15] KATZ M J,HOWARTH A J,MOGHADAM P Z,et al. High volumetric uptake of ammonia using Cu-MOF-74/Cu-CPO-27[J]. Dalton Transactions,2015,45(10):4150-4153.
[16] LI J R,YU J,LU W,et al. Porous materials with pre-designed single-molecule traps for CO2 selective adsorption[J]. Nature Communications,2013,4:1538.DOI:10.1038/ncomms2552.
[17] XU H,HE Y,ZHANG Z,et al. A microporous metal-organic framework with both open metal and Lewis basic pyridyl sites for highly selective C2H2/CH4 and C2H2/CO2 gas separation at room temperature[J]. Journal of Materials Chemistry A,2013,1(1):77-81.
[18] GUO Z,WU H,SRINIVAS G,et al. A metal-organic framework with optimized open metal sites and pore spaces for high methane storage at room temperature[J]. Angewandte Chemie International Edition,2011,50(14):3178-3181.
[19] WEN H M,LI B,WANG H,et al. A microporous metal-organic framework with rare lvt topology for highly selective C2H2/C2H4 separation at room temperature[J]. Chemical Communications,2015,51(26):5610-5613.
[20] YANG Q,JOBIC H,SALLES F,et al. Probing the dynamics of CO2 and CH4 within the porous zirconium terephthalate UiO-66(Zr):a synergic combination of neutron scattering measurements and molecular simulations[J]. Chemistry——A European Journal,2011,17(32):8882-8889.
[21] VALVEKENS P,VERMOORTELE F,DE Vos D. Metal-organic frameworks as catalysts:the role of metal active sites[J]. Catalysis Science & Technology,2013,3(6):1435-1445.
[22] VANDICHEL M,HAJEK J,VERMOORTELE F,et al. Active site engineering in UiO-66 type metal-organic frameworks by intentional creation of defects:a theoretical rationalization[J]. CrystEngComm,2015,17(2):395-406.
[23] YANG Q,WIERSUM A D,LLEWELLYN P L,et al. Functionalizing porous zirconium terephthalate UiO-66(Zr) for natural gas upgrading:a computational exploration[J]. Chemical Communications,2011,47(34):9603-9605.
[24] VALENZANO L,CIVALLERI B,CHAVAN S,et al. Disclosing the complex structure of UiO-66 metal organic framework:a synergic combination of experiment and theory[J]. Chemistry of Materials,2011,23(7):1700-1718.
[25] NIJEM N,CANEPA P,KONG L,et al. Spectroscopic characterization of van der Waals interactions in a metal organic framework with unsaturated metal centers:MOF-74-Mg[J]. Journal of Physics:Condensed Matter,2012,24(42):424203.
[26] TIAN Z,DAI S,JIANG D. Site partition:turning one site into two for adsorbing CO2 [J]. The Journal of Physical Chemistry Letters,2016.
[27] CASKEY S R,WONG-Foy A G,MATZGER A J. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores[J]. Journal of the American Chemical Society,2008,130(33):10870-10871.
[28] KARRA J R,WALTON K S. Molecular simulations and experimental studies of CO2,CO,and N2 adsorption in metal-organic frameworks[J]. The Journal of Physical Chemistry C,2010,114(37):15735-15740.
[29] RUBEŠ M,WIERSUM A D,LLEWELLYN P L,et al. Adsorption of propane and propylene on Cu-BTC metal-organic framework:combined theoretical and experimental investigation[J]. The Journal of Physical Chemistry C,2013,117(21):11159-11167.
[30] GRAJCIAR L,NACHTIGALL P,BLUDSKÝ O,et al. Accurate ab initio description of adsorption on coordinatively unsaturated Cu2+ and Fe3+ sites in MOFs[J]. Journal of Chemical Theory and Computation,2014,11(1):230-238.
[31] EUBANK J F,WHEATLEY P S,LEBARS G,et al. Porous,rigid metal (Ⅲ)-carboxylate metal-organic frameworks for the delivery of nitric oxide[J]. APL Materials,2014,2(12):124112. DOI:10.1063/1.4904069.
[32] GLOVER T G,PETERSON G W,SCHINDLER B J,et al. MOF-74 building unit has a direct impact on toxic gas adsorption[J]. Chemical Engineering Science,2011,66(2):163-170.
[33] ORCAJO G,VILLAJOS J A,MARTOS C,et al. Influence of chemical composition of the open bimetallic sites of MOF-74 on H2 adsorption [J]. Adsorption,2015,21(8):589-595.
[34] WONGSAKULPHASATCH S,NOUAR F,RODRIGUEZ J,et al. Direct accessibility of mixed-metal (Ⅲ/Ⅱ)acid sites through the rational synthesis of porous metal carboxylates[J]. Chemical Communications,2015,51(50):10194-10197.
[35] KITAGAWA S,NORO S,NAKAMURA T. Pore surface engineering of microporous coordination polymers[J]. Chemical Communications,2006 (7):701-707.
[36] HASEGAWA S,HORIKE S,MATSUDA R,et al. Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand:selective sorption and catalysis[J]. Journal of the American Chemical Society,2007,129(9):2607-2614.
[37] ZHENG S T,BU J T,LI Y,et al. Pore space partition and charge separation in cage-within-cage indium-organic frameworks with high CO2 uptake[J]. Journal of the American Chemical Society,2010,132(48):17062-17064.
[38] STAVITSKI E,PIDKO E A,COUCK S,et al. Complexity behind CO2 capture on NH2-MIL-53 (Al)[J]. Langmuir,2011,27(7):3970-3976.
[39] BOURRELLY S,LLEWELLYN P L,SERRE C,et al. Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47[J]. Journal of the American Chemical Society,2005,127(39):13519-13521.
[40] ARSTAD B,FJELLVÅG H,KONGSHAUG K O,et al. Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide[J]. Adsorption,2008,14(6):755-762.
[41] COUCK S,DENAYER J F M,BARON G V,et al. An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4 [J]. Journal of the American Chemical Society,2009,131(18):6326-6327.
[42] SERRA-CRESPO P,BERGER R,YANG W,et al. Separation of CO2/CH4 mixtures over NH2-MIL-53-an experimental and modelling study[J]. Chemical Engineering Science,2015,124:96-108.
[43] MCDONALD T M,LEE W R,MASON J A,et al. Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc)[J]. Journal of the American Chemical Society,2012,134(16):7056-7065.
[44] YAZAYDIN A O,BENIN A I,FAHEEM S A,et al. Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules[J]. Chemistry of Materials,2009,21(8):1425-1430.
[45] LIANG Z,MARSHALL M,CHAFFEE A L. CO2 adsorption-based separation by metal organic framework(Cu-BTC)versus zeolite (13X)[J]. Energy & Fuels,2009,23(5):2785-2789.
[46] SOUBEYRAND-LENOIR E,VAGNER C,YOON J W,et al. How water fosters a remarkable 5-fold increase in low-pressure CO2 uptake within mesoporous MIL-100(Fe)[J]. Journal of the American Chemical Society,2012,134(24):10174-10181.
[47] GUL-E-NOOR F,JEE B,PÖPPL A,et al. Effects of varying water adsorption on a Cu3(BTC)2 metal-organic framework(MOF)as studied by 1H and 13C solid-state NMR spectroscopy[J]. Physical Chemistry Chemical Physics,2011,13(17):7783-7788.
[48] ZÁRATE A,PERALTA R A,BAYLISS P A,et al. CO2 capture under humid conditions in NH2-MIL-53(Al):the influence of the amine functional group[J]. RSC Advances,2016,6(12):9978-9983.
[49] LIU J,WANG Y,BENIN A I,et al. CO2/H2O adsorption equilibrium and rates on metal-organic frameworks:HKUST-1 and Ni/DOBDC[J]. Langmuir,2010,26(17):14301-14307.
[50] PENTYALA V,DAVYDOVSKAYA P,ADE M,et al. Carbon dioxide gas detection by open metal site metal organic frameworks and surface functionalized metal organic frameworks[J]. Sensors and Actuators B:Chemical,2016,225:363-368.
[51] HARTMANN M,KUNZ S,HIMSL D,et al. Adsorptive separation of isobutene and isobutane on Cu3 (BTC)2[J]. Langmuir,2008,24(16):8634-8642.
[52] HONG D Y,HWANG Y K,SERRE C,et al. Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites:surface functionalization,encapsulation,sorption and catalysis[J]. Advanced Functional Materials,2009,19(10):1537-1552.
[53] LEE D J,LI Q,KIM H,et al. Preparation of Ni-MOF-74 membrane for CO2 separation by layer-by-layer seeding technique[J]. Microporous and Mesoporous Materials,2012,163:169-177.
[54] SORRIBAS S,ZORNOZA B,SERRA-CRESPO P,et al. Synthesis and gas adsorption properties of mesoporous silica-NH2-MIL-53 (Al)core-shell spheres[J]. Microporous and Mesoporous Materials,2016,225:116-121. |