[1] SUMIDA K,ROGOW D L,MASON J A,et al. Carbon dioxide capture in metal-organic frameworks[J]. Chemical Reviews,2012,12(2):724-81.
[2] 李立博,王勇,王小青,等. 柔性金属有机骨架材料(MOFs)用于气体吸附分离[J]. 化工进展,2016,35(6):1794-1803. LI L B,WANG Y,WANG X Q,et al. Selective gas adsorption and separation in flexible metal-organic frameworks[J]. Chemical Industry and Engineering Progress,2016,35(6):1794-1803.
[3] FURUKAWA H,CORDOVA K E,O' KEEFFE M,et al. The chemistry and applications of metal-organic frameworks[J]. Science,2013,341(6149):1230444-1230444.
[4] ZHAO Z,LI Z,LIN Y S. Adsorption and diffusion of carbon dioxide on metal-organic framework (MOF-5)[J]. Industrial & Engineering Chemistry Research,2009,48(22):10015-10020.
[5] BOTAS J A,CALLEJA G,SANCHEZSANCHEZ M,et al. Cobalt doping of the MOF-5 framework and its effect on gas-adsorption properties[J]. Langmuir the Acs Journal of Surfaces & Colloids,2010,26(8):5300-5303.
[6] 朱晨明,王保登,张中正,等. 金属-有机骨架复合材料的制备及其二氧化碳吸附性能[J]. 化工进展,2016,35(9):2875-2884. ZHU C M,WANG B D,ZHANG Z Z,et al. Preparation and CO2 adsorption performance of metal-organic framework composites[J]. Chemical Industry and Engineering Progress,2016,35(9):2875-2884.
[7] ZHANG Y B,FURUKAWA H,KO N,et al. Introduction of functionality,selection of topology,and enhancement of gas adsorption in multivariate metal-organic framework-177[J]. Journal of the American Chemical Society,2015,137(7):2641-2650.
[8] PARK H J,SUH M P. Mixed-ligand metal-organic frameworks with large pores:gas sorption properties and single-crystal-to-single- crystal transformation on guest exchange[J]. Chemistry,2008,14(29):8812-8821.
[9] 王天龙,张燕,王新红,等. 类沸石咪唑酯骨架材料(ZIFs)的研究进展[J]. 化工进展,2015,34(11):3959-3964. WANG T L,ZHANG Y,WANG X H,et al. Research progress in zeoliticimidazolate frameworks(ZIFs)[J]. Chemical Industry and Engineering Progress,2015,34(11):3959-3964.
[10] MORRIS W,LEUNG B,FURUKAWA H,et al. A combined experimental-computational investigation of carbon dioxide capture in a series of isoreticular zeolitic imidazolate frameworks[J]. Journal of the American Chemical Society,2010,132(32):11006-11008.
[11] COLOMBO V,GALLI S,CHOI H J,et al. High thermal and chemical stability in pyrazolate-bridged metal-organic frameworks with exposed metal sites[J]. Chemical Science,2011,2(7):1311-1319.
[12] CLEARFIELD A,DEMADIS K D. Metal phosphonate chemistry: from synthesis to applications[M]. London:Royal Society of Chemistry,2011.
[13] ROWSELL J L C,MILLWARD A R,PARK K S,et al. Hydrogen sorption in functionalized metal-organic frameworks[J]. Journal of the American Chemical Society,2004,126(18): 5666-5667.
[14] FEREY G,MELLOT-DRAZNIEKS C,SERRE C,et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science,2005,309(5743):2040-2042.
[15] REN J,ROGERS D E C,SEGAKWENG T,et al. Thermal treatment induced transition from Zn3(OH)2(BDC)2(MOF-69c) to Zn4O(BDC)3(MOF-5)[J]. International Journal of Materials Research,2014,105(1):89-93.
[16] BIDEAU J L,PAYEN C,PALVADEAU P,et al. Preparation,structure,and magnetic properties of copper(Ⅱ) phosphonates. beta.-cull(CH3PO3),an original three-dimensional structure with a channel-type arrangement[J]. Inorganic Chemistry,2002,33(22). DOI:10.1021/ic00100a011.
[17] MAEDA K,KIYOZUMI Y,MIZUKAMI F. Synthesis of the first microporous aluminum phosphonate with organic groups covalently bonded to the skeleton[J]. Angewandte Chemie International Edition,1994,33(22):2335-2337.
[18] MAEDA K,AKIMOTO J,KIYOZUMI Y,et al. AlMepO-α:a novel open-framework aluminum methylphosphonate with organo-lined unidimensional channels[J]. Angewandte Chemie International Edition in English,1995,34(11):1199-1201.
[19] MAEDA K,AKIMOTO J,KIYOZUMI Y,et al. Structure of aluminium methylphosphonate,AIMepO-β,with unidimensional channels formed from ladder-like organic-inorganic polymer chains[J]. Journal of the Chemical Society Chemical Communications,1995,10(10):1033-1034.
[20] HERDES C,VALENTE A,LIN Z,et al. Selective adsorption of volatile organic compounds in micropore aluminum methylphosphonate-alpha:a combined molecular simulation-experimental approach[J]. Langmuir,2007,23(13):7299-305.
[21] POOJARY D M,GROHOL D,CLEARFIELD A. Synthesis and X-ray powder structure of a novel porous uranyl phenylphosphonate containing unidimensional channels flanked by hydrophobic regions[J]. Angewandte Chemie International Edition,1995,34(1314):1508-1510.
[22] POOJARY D M,ZHANG B,CABEZA A,et al. Synthesis and crystal structures of two metal phosphonates,M(HO3PC6H5)2(M=Ba,Pb)[J]. Journal of Materials Chemistry,1996,6(4):639-644.
[23] YOON M,MOON D. New Zr (IV) based metal-organic framework comprising a sulfur-containing ligand:enhancement of CO2 and H2 storage capacity[J]. Microporous and Mesoporous Materials,2015,215:116-122.
[24] SOGHOMONIAN V,CHEN Q,HAUSHALTER R C,et al. Hydrothermal syntheses and structural characterization of layered oxovanadium phosphate solids incorporating organic cations:[H2N(C4H8)NH2][(VO)4(OH)4(PO4)2],[(NH3C3H6)NH(C2H4)2NH (C3H6NH3)][(VO)5(OH)2(PO4)4].cntdot. 2H2O,[HN(C2H4)3NH]2[(VO)8(HPO4)3(PO4)4][J]. Inorganic Chemistry,1995,34(13). DOI:10.1021/ic00117a021.
[25] LADUCA R,ROSE D,DEBORD J R D,et al. Three-dimensional metal piperazinyldiphosphonate phases with ellipsoidal cavities defined by 44-membered rings:crystal structures of [M{O3PCH2NH(C2H4)2NHCH2PO3]·H2O,M = Mn and Co[J]. Journal of Solid State Chemistry,1996,123(2):408-412.
[26] SERRE Christian,GROVES John A, LIGHTFOOT Philip,et al. Synthesis,structure and properties of related microporous N,N'-piperazinebismethylenephosphonates of aluminum and titanium[J]. Chemistry of Materials,2006,18(60):1451-1457.
[27] LLEWELLYN P L,GARCIA-RATES M,GABEROVA L,et al. Structural origin of unusual CO2 adsorption behavior of a small-pore aluminum bisphosphonate MOF[J]. The Journal of Physical Chemistry C,2015,119(8):4208-4216.
[28] BENOIT V,PILLAI R S,ORSI A,et al. MIL-91(Ti),a small pore metal-organic framework which fulfils several criteria:an upscaled green synthesis,excellent water stability,high CO2 selectivity and fast CO2 transport[J]. Journal of Materials Chemistry A,2016,4(4):1383-1389.
[29] GROVES J A,MILLER S R,WARRENDER S J,et al. The first route to large pore metal phosphonates[J]. Chemical Communications,2006,31(31):3305-3307.
[30] GAGNON K,PERRY H P,CLEARFIELD A. Conventional and unconventional metal-organic frameworks based on phosphonate ligands:MOFs and UMOFs[J]. Chemical Reviews,2011,112(2):1034-1054.
[31] MILLER S R,PEARCE G M,WRIGHT P A,et al. Structural transformations and adsorption of fuel-related gases of a structurally responsive nickel phosphonate metal-organic framework,Ni-STA-12[J]. Journal of the American Chemical Society,2008,130(47):15967-15981.
[32] LI C P,DU M. ChemInform abstract:role of solvents in coordination supramolecular systems[J]. Chemical Communications,2011,42(40):5958-5972.
[33] MOWAT J P S,GROVES J A,WHARMBY M T,et al. Lanthanide N,N'-piperazine-bis(methylenephosphonates)(Ln =La,Ce,Nd)that display flexible frameworks,reversible hydration and cation exchange[J]. Journal of Solid State Chemistry,2009,182(10):2769-2778.
[34] DU Z Y,XU H B,MAO J G. Rational design of 0D,1D,and 3D open frameworks based on tetranuclear lanthanide(Ⅲ) sulfonate-phosphonate clusters[J]. Inorganic Chemistry,2006,45(24):9780-9788.
[35] WHARMBY M T,MILLER S R,GROVES J A,et al. Yttrium bisphosphonate STA-13:a racemic phosphonate metal organic framework with permanent microporosity[J]. Dalton Transactions,2010,39(28):6389-6391.
[36] WHARMBY M T,MOWAT J P S,THOMPSON S P,et al. Extending the pore size of crystalline metal phosphonates toward the mesoporous regime by isoreticular synthesis[J]. Journal of the American Chemical Society,2011,133(5):1266-1269.
[37] PATZSCHKE C,FORSYTH C M,BATTEN S R,et al. Formation of a non-porous cobalt-phosphonate framework by small pH change in the preparation of the microporous STA-16 (Co)[J]. Crystengcomm,2014,16(28):6296-6299.
[38] PATZSCHKE C,MARSHALL M,CHAFFEE A L. An adsorption study on STA-16(Co)[J]. Microporous and Mesoporous Materials,2016,222:169-177.
[39] YAZAYDIN A Ö,SNURR R Q,PARK T H,et al. Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach[J]. Journal of the American Chemical Society,2009,131(51):18198-18199.
[40] TADDEI M,COSTANTINO F,VIVANI R. Synthesis and crystal structure from X-ray powder diffraction data of two zirconium diphosphonates containing piperazine groups[J]. Inorganic Chemistry,2010,49(20):9664-9670.
[41] MAH R K,GELFAND B S,TAYLOR J M,et al. Reconciling order,stability,and porosity in phosphonate metal-organic frameworks via HF-mediated synthesis[J]. Inorganic Chemistry Frontiers,2015,2(3):273-277.
[42] IREMONGER S S,LIANG J,VAIDHYANATHAN R,et al. Phosphonate monoesters as carboxylate-like 1inkers for metal organic frameworks[J]. Journal of the American Chemical Society,2011,133(50):20048-20051.
[43] TAYLOR J M,VAIDHYANATHAN R,IREMONGER S S,et al. Enhancing water stability of metal-organic frameworks via phosphonate monoester linkers[J]. Journal of the American Chemical Society,2012,134(35):14338-14340.
[44] LIN J B,SHIMIZU G K H. Pyridinium linkers and mixed anions in cationic metal-organic frameworks[J]. Inorg. Chem. Front.,2014,1(1):302-305.
[45] GELFAND B S,LIN J B,SHIMIZU G K. Design of a humidity-stable metal-organic framework using a phosphonate monoester ligand[J]. Inorganic Chemistry,2015,54(4):1185-1187. |