Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (S1): 197-204.DOI: 10.16085/j.issn.1000-6613.2025-0174
• Industrial catalysis • Previous Articles
MA Xiaobiao(
), LIU Han, WANG Weihuan, MIAO Peipei, JI Yinghui, CHEN Boyang, PENG Xiaowei, XU Qiang, JIN Fengying, MA Mingchao, WANG Yinbin, GUO Chunlei(
)
Received:2025-02-08
Revised:2025-07-31
Online:2025-11-24
Published:2025-10-25
Contact:
GUO Chunlei
马晓彪(
), 刘晗, 王伟欢, 苗培培, 季莹辉, 陈博阳, 彭晓伟, 许强, 靳凤英, 马明超, 王银斌, 郭春垒(
)
通讯作者:
郭春垒
作者简介:马晓彪(1996—)男,硕士,工程师,研究方向为工业催化。E-mail:2643077671@qq.com。
基金资助:CLC Number:
MA Xiaobiao, LIU Han, WANG Weihuan, MIAO Peipei, JI Yinghui, CHEN Boyang, PENG Xiaowei, XU Qiang, JIN Fengying, MA Mingchao, WANG Yinbin, GUO Chunlei. Effect of acid and phosphorus composite modification on the catalytic cracking performance of ZSM-5 molecular sieve[J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 197-204.
马晓彪, 刘晗, 王伟欢, 苗培培, 季莹辉, 陈博阳, 彭晓伟, 许强, 靳凤英, 马明超, 王银斌, 郭春垒. 酸和磷复合改性对ZSM-5分子筛催化裂解性能的影响[J]. 化工进展, 2025, 44(S1): 197-204.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2025-0174
| 样品名称 | 组成(质量分数)/% | SiO2/Al2O3 | 相对结晶度/% | |||
|---|---|---|---|---|---|---|
| SiO2 | Al2O3 | P2O5 | SO3 | |||
| Z5 | 93.7 | 5.98 | — | — | 26.6 | 100 |
| Z5-H | 93.7 | 5.98 | — | — | 26.6 | 68.2 |
| PZ5-H | 88.9 | 5.70 | 5.03 | — | 26.5 | 76.1 |
| 0.2SPZ5-H | 88.8 | 5.58 | 5.02 | 0.004 | 27.1 | 78.5 |
| 0.5SPZ5-H | 88.9 | 5.59 | 5.01 | 0.005 | 27.0 | 82.6 |
| 1.0SPZ5-H | 89.4 | 5.54 | 5.02 | 0.005 | 27.4 | 88.3 |
| 2.0SPZ5-H | 89.4 | 5.53 | 5.01 | 0.005 | 27.5 | 87.8 |
| 样品名称 | 组成(质量分数)/% | SiO2/Al2O3 | 相对结晶度/% | |||
|---|---|---|---|---|---|---|
| SiO2 | Al2O3 | P2O5 | SO3 | |||
| Z5 | 93.7 | 5.98 | — | — | 26.6 | 100 |
| Z5-H | 93.7 | 5.98 | — | — | 26.6 | 68.2 |
| PZ5-H | 88.9 | 5.70 | 5.03 | — | 26.5 | 76.1 |
| 0.2SPZ5-H | 88.8 | 5.58 | 5.02 | 0.004 | 27.1 | 78.5 |
| 0.5SPZ5-H | 88.9 | 5.59 | 5.01 | 0.005 | 27.0 | 82.6 |
| 1.0SPZ5-H | 89.4 | 5.54 | 5.02 | 0.005 | 27.4 | 88.3 |
| 2.0SPZ5-H | 89.4 | 5.53 | 5.01 | 0.005 | 27.5 | 87.8 |
| 样品名称 | 比表面积/m2·g-1 | 孔体积/cm3·g-1 | 平均孔径/nm | |||
|---|---|---|---|---|---|---|
| 总比表面积 | 微孔比表面积 | 介孔比表面积 | 总孔体积 | 微孔体积 | ||
| Z5 | 300 | 227 | 73 | 0.17 | 0.12 | 1.25 |
| Z5-H | 291 | 138 | 153 | 0.16 | 0.06 | 1.38 |
| PZ5-H | 288 | 69 | 219 | 0.14 | 0.04 | 1.16 |
| 0.2SPZ5-H | 291 | 72 | 219 | 0.15 | 0.04 | 1.18 |
| 0.5SPZ5-H | 288 | 75 | 213 | 0.16 | 0.04 | 1.21 |
| 1.0SPZ5-H | 290 | 83 | 207 | 0.16 | 0.04 | 1.24 |
| 2.0SPZ5-H | 287 | 85 | 202 | 0.16 | 0.04 | 1.24 |
| 样品名称 | 比表面积/m2·g-1 | 孔体积/cm3·g-1 | 平均孔径/nm | |||
|---|---|---|---|---|---|---|
| 总比表面积 | 微孔比表面积 | 介孔比表面积 | 总孔体积 | 微孔体积 | ||
| Z5 | 300 | 227 | 73 | 0.17 | 0.12 | 1.25 |
| Z5-H | 291 | 138 | 153 | 0.16 | 0.06 | 1.38 |
| PZ5-H | 288 | 69 | 219 | 0.14 | 0.04 | 1.16 |
| 0.2SPZ5-H | 291 | 72 | 219 | 0.15 | 0.04 | 1.18 |
| 0.5SPZ5-H | 288 | 75 | 213 | 0.16 | 0.04 | 1.21 |
| 1.0SPZ5-H | 290 | 83 | 207 | 0.16 | 0.04 | 1.24 |
| 2.0SPZ5-H | 287 | 85 | 202 | 0.16 | 0.04 | 1.24 |
| 样品名称 | 弱酸 | 强酸 | 总酸量 /mmol·g-1 | ||
|---|---|---|---|---|---|
| 温度/℃ | 酸量/mmol·g-1 | 温度/℃ | 酸量/mmol·g-1 | ||
| Z5 | 205 | 0.82 | 418 | 0.77 | 1.59 |
| Z5-H | 160 | 0.04 | 276 | 0.04 | 0.08 |
| PZ5-H | 164 | 0.08 | 270 | 0.05 | 0.13 |
| 0.2SPZ5-H | 163 | 0.11 | 270 | 0.05 | 0.16 |
| 0.5SPZ5-H | 162 | 0.11 | 270 | 0.06 | 0.17 |
| 1.0SPZ5-H | 166 | 0.11 | 270 | 0.07 | 0.18 |
| 2.0SPZ5-H | 163 | 0.12 | 270 | 0.06 | 0.18 |
| 样品名称 | 弱酸 | 强酸 | 总酸量 /mmol·g-1 | ||
|---|---|---|---|---|---|
| 温度/℃ | 酸量/mmol·g-1 | 温度/℃ | 酸量/mmol·g-1 | ||
| Z5 | 205 | 0.82 | 418 | 0.77 | 1.59 |
| Z5-H | 160 | 0.04 | 276 | 0.04 | 0.08 |
| PZ5-H | 164 | 0.08 | 270 | 0.05 | 0.13 |
| 0.2SPZ5-H | 163 | 0.11 | 270 | 0.05 | 0.16 |
| 0.5SPZ5-H | 162 | 0.11 | 270 | 0.06 | 0.17 |
| 1.0SPZ5-H | 166 | 0.11 | 270 | 0.07 | 0.18 |
| 2.0SPZ5-H | 163 | 0.12 | 270 | 0.06 | 0.18 |
| 样品名称 | n(P)/n(Al) | |
|---|---|---|
| 体相 | 表面 | |
| PZ5-H | 0.63 | 1.12 |
| 0.2SPZ5-H | 0.65 | 0.91 |
| 0.5SPZ5-H | 0.64 | 0.85 |
| 1.0SPZ5-H | 0.65 | 0.76 |
| 2.0SPZ5-H | 0.65 | 0.77 |
| 样品名称 | n(P)/n(Al) | |
|---|---|---|
| 体相 | 表面 | |
| PZ5-H | 0.63 | 1.12 |
| 0.2SPZ5-H | 0.65 | 0.91 |
| 0.5SPZ5-H | 0.64 | 0.85 |
| 1.0SPZ5-H | 0.65 | 0.76 |
| 2.0SPZ5-H | 0.65 | 0.77 |
| 项目 | Z5-H | PZ5-H | 0.2SPZ5-H | 0.5SPZ5-H | 1.0SPZ5-H | 2.0SPZ5-H |
|---|---|---|---|---|---|---|
| 干气收率(质量分数)/% | 12.00 | 22.16 | 23.88 | 24.93 | 28.22 | 28.24 |
| 液化气收率(质量分数)/% | 35.19 | 47.25 | 47.98 | 50.62 | 53.24 | 53.26 |
| C5+C6+C7收率(质量分数)/% | 48.98 | 26.30 | 23.77 | 19.65 | 13.62 | 13.54 |
| 焦炭收率(质量分数)/% | 3.83 | 4.29 | 4.37 | 4.80 | 4.92 | 4.96 |
| 转化率/% | 51.02 | 73.70 | 76.23 | 80.35 | 86.38 | 86.46 |
| 氢气收率(质量分数)/% | 0.18 | 0.42 | 0.51 | 0.56 | 0.55 | 0.58 |
| 甲烷收率(质量分数)/% | 1.91 | 2.55 | 3.07 | 3.23 | 3.40 | 3.50 |
| 乙烷收率(质量分数)/% | 1.08 | 5.04 | 6.38 | 7.1 | 7.85 | 8.17 |
| 乙烯收率(质量分数)/% | 6.89 | 11.82 | 13.51 | 14.28 | 16.43 | 16.07 |
| 丙烷收率(质量分数)/% | 2.52 | 6.45 | 9.35 | 12.08 | 14.01 | 14.99 |
| 丙烯收率(质量分数)/% | 8.47 | 17.67 | 20.26 | 20.94 | 21.65 | 22.15 |
| 双烯收率(质量分数)/% | 15.36 | 29.49 | 33.77 | 35.22 | 38.08 | 38.22 |
| 丁烯收率(质量分数)/% | 7.46 | 10.02 | 11.26 | 12.15 | 12.76 | 12.88 |
| 苯收率(质量分数)/% | 4.50 | 4.71 | 4.83 | 4.85 | 4.94 | 4.93 |
| 项目 | Z5-H | PZ5-H | 0.2SPZ5-H | 0.5SPZ5-H | 1.0SPZ5-H | 2.0SPZ5-H |
|---|---|---|---|---|---|---|
| 干气收率(质量分数)/% | 12.00 | 22.16 | 23.88 | 24.93 | 28.22 | 28.24 |
| 液化气收率(质量分数)/% | 35.19 | 47.25 | 47.98 | 50.62 | 53.24 | 53.26 |
| C5+C6+C7收率(质量分数)/% | 48.98 | 26.30 | 23.77 | 19.65 | 13.62 | 13.54 |
| 焦炭收率(质量分数)/% | 3.83 | 4.29 | 4.37 | 4.80 | 4.92 | 4.96 |
| 转化率/% | 51.02 | 73.70 | 76.23 | 80.35 | 86.38 | 86.46 |
| 氢气收率(质量分数)/% | 0.18 | 0.42 | 0.51 | 0.56 | 0.55 | 0.58 |
| 甲烷收率(质量分数)/% | 1.91 | 2.55 | 3.07 | 3.23 | 3.40 | 3.50 |
| 乙烷收率(质量分数)/% | 1.08 | 5.04 | 6.38 | 7.1 | 7.85 | 8.17 |
| 乙烯收率(质量分数)/% | 6.89 | 11.82 | 13.51 | 14.28 | 16.43 | 16.07 |
| 丙烷收率(质量分数)/% | 2.52 | 6.45 | 9.35 | 12.08 | 14.01 | 14.99 |
| 丙烯收率(质量分数)/% | 8.47 | 17.67 | 20.26 | 20.94 | 21.65 | 22.15 |
| 双烯收率(质量分数)/% | 15.36 | 29.49 | 33.77 | 35.22 | 38.08 | 38.22 |
| 丁烯收率(质量分数)/% | 7.46 | 10.02 | 11.26 | 12.15 | 12.76 | 12.88 |
| 苯收率(质量分数)/% | 4.50 | 4.71 | 4.83 | 4.85 | 4.94 | 4.93 |
| [1] | ALOTAIBI Faisal M, Sergio GONZÁLEZ-CORTÉS, ALOTIBI Mohammed F, et al. Enhancing the production of light olefins from heavy crude oils: Turning challenges into opportunities[J]. Catalysis Today, 2018, 317: 86-98. |
| [2] | ALOTIBI Mohammed F, ALSHAMMARI Basheer A, ALOTAIBI Mohammad Hayal, et al. ZSM-5 zeolite based additive in FCC process: A review on modifications for improving propylene production[J]. Catalysis Surveys from Asia, 2020, 24(1): 1-10. |
| [3] | CORMA A, CORRESA E, MATHIEU Y, et al. Crude oil to chemicals: Light olefins from crude oil[J]. Catalysis Science & Technology, 2017, 7(1): 12-46. |
| [4] | VOGT E T C, WECKHUYSEN B M. Fluid catalytic cracking: Recent developments on the grand old lady of zeolite catalysis[J]. Chemical Society Reviews, 2015, 44(20): 7342-7370. |
| [5] | CORMA Avelino, MENGUAL Jesús, MIGUEL Pablo J. Stabilization of ZSM-5 zeolite catalysts for steam catalytic cracking of naphtha for production of propene and ethene[J]. Applied Catalysis A: General, 2012, 421: 121-134. |
| [6] | GUSEV Andrey A, PSARRAS Antonios C, TRIANTAFYLLIDIS Konstantinos S, et al. Effect of steam deactivation severity of ZSM-5 additives on LPG olefins production in the FCC process[J]. Molecules, 2017, 22(10): 1784. |
| [7] | SONG Zhaoxia, TAKAHASHI Atsushi, NAKAMURA Isao, et al. Phosphorus-modified ZSM-5 for conversion of ethanol to propylene[J]. Applied Catalysis A: General, 2010, 384(1/2): 201-205. |
| [8] | YAMAGUCHI Aritomo, JIN Dingfeng, IKEDA Takuji, et al. P-ZSM-5 pretreated by high-temperature calcination as durable catalysts for steam cracking of n-hexane[J]. Catalysis Letters, 2014, 144(1): 44-49. |
| [9] | RAHIMI N, MORADI D, SHEIBAK M, et al. The influence of modification methods on the catalytic cracking of LPG over lanthanum and phosphorus modified HZSM-5 catalysts[J]. Microporous and Mesoporous Materials, 2016, 234: 215-223. |
| [10] | KAEDING W W, CHU C, YOUNG L B, et al. Selective alkylation of toluene with methanol to produce para-xylene[J]. Journal of Catalysis, 1981, 67(1): 159-174. |
| [11] | BLASCO T, CORMA A, MARTÍNEZ-TRIGUERO J. Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition[J]. Journal of Catalysis, 2006, 237(2): 267-277. |
| [12] | VAN DER BIJ Hendrik E, ARAMBURO Luis R, ARSTAD Bjørnar, et al. Phosphatation of zeolite H-ZSM-5: A combined microscopy and spectroscopy study[J]. ChemPhysChem, 2014, 15(2): 283-292. |
| [13] | HAN Lei, OUYANG Ying, XING Enhui, et al. Enhancing hydrothermal stability of framework Al in ZSM-5: From the view on the transformation between P and Al species by solid-state NMR spectroscopy[J]. Chinese Journal of Chemical Engineering, 2020, 28(12): 3052-3060. |
| [14] | 韩蕾, 欧阳颖, 罗一斌, 等. 分子筛孔结构对轻烃催化裂解性能的影响[J]. 石油学报(石油加工), 2018, 34(6): 1057-1066. |
| HAN Lei, OUYANG Ying, LUO Yibin, et al. Effects of pore structure on the catalytic performance of ZSM-5 zeolite in light hydrocarbons cracking[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2018, 34(6): 1057-1066. | |
| [15] | 李君华, 王丽娜, 张丹, 等. 酸处理ZSM-5分子筛对甲醇芳构化反应的影响[J]. 现代化工, 2020, 40(3): 107-111. |
| LI Junhua, WANG Lina, ZHANG Dan, et al. Effect of acid treatment of ZSM-5 molecular sieve on methanol to aromatics[J]. Modern Chemical Industry, 2020, 40(3): 107-111. | |
| [16] | 孙泽平, 武建兵, 李鹏, 等. 柠檬酸处理对ZSM-5分子筛甲缩醛气相羰基化性能的影响[J]. 分子催化, 2021, 35(1): 22-30. |
| SUN Zeping, WU Jianbing, LI Peng, et al. Effect of citric acid modification of ZSM-5 zeolite on vapor-phase dimethoxymethane carbonylation[J]. Journal of Molecular Catalysis (China), 2021, 35(1): 22-30. | |
| [17] | 徐如人. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004: 140-141. |
| XU Ruren. Molecular sieves and porous materials chemistry[M]. Beijing: Science Press, 2004: 140-141. | |
| [18] | ZHOU Jian, TENG Jiawei, REN Liping, et al. Full-crystalline hierarchical monolithic ZSM-5 zeolites as superiorly active and long-lived practical catalysts in methanol-to-hydrocarbons reaction[J]. Journal of Catalysis, 2016, 340: 166-176. |
| [19] | RAMESH Kanaparthi, Chang JIE, HAN Yifan, et al. Synthesis, characterization, and catalytic activity of phosphorus modified H-ZSM-5 catalysts in selective ethanol dehydration[J]. Industrial & Engineering Chemistry Research, 2010, 49(9): 4080-4090. |
| [20] | GAO Xionghou, TANG Zhicheng, LU Gongxuan, et al. Butene catalytic cracking to ethylene and propylene on mesoporous ZSM-5 by desilication[J]. Solid State Sciences, 2010, 12(7): 1278-1282. |
| [21] | MOCHIZUKI Hiroshi, YOKOI Toshiyuki, IMAI Hiroyuki, et al. Effect of desilication of H-ZSM-5 by alkali treatment on catalytic performance in hexane cracking[J]. Applied Catalysis A: General, 2012, 449: 188-197. |
| [22] | LIU Jia, LI Yuming, CHEN Zhentao, et al. Hierarchical ZSM-5 zeolites with tunable sizes of building blocks for efficient catalytic cracking of i-butane[J]. Industrial & Engineering Chemistry Research, 2018, 57(31): 10327-10335. |
| [23] | LEE Joongwon, HONG Ung Gi, HWANG Sunhwan, et al. Catalytic cracking of C5 raffinate to light olefins over lanthanum-containing phosphorous-modified porous ZSM-5: Effect of lanthanum content[J]. Fuel Processing Technology, 2013, 109: 189-195. |
| [24] | DING Jian, WANG Meng, PENG Luming, et al. Combined desilication and phosphorus modification for high-silica ZSM-5 zeolite with related study of hydrocarbon cracking performance[J]. Applied Catalysis A: General, 2015, 503: 147-155. |
| [25] | CAEIRO G, MAGNOUX P, LOPES J M, et al. Stabilization effect of phosphorus on steamed H-MFI zeolites[J]. Applied Catalysis A: General, 2006, 314(2): 160-171. |
| [26] | 许顺年, 王刚, 刘美佳, 等. P-Fe改性ZSM-5分子筛的酸性质对正戊烷催化裂解性能的影响[J]. 石油学报(石油加工), 2023, 39(3): 487-496. |
| XU Shunnian, WANG Gang, LIU Meijia, et al. Effect of acid properties of P-Fe modified ZSM-5 zeolite on the catalytic pyrolysis performance of n-pentane[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2023, 39(3): 487-496. | |
| [27] | GAO Xionghou, TANG Zhicheng, JI Dong, et al. Modification of ZSM-5 zeolite for maximizing propylene in fluid catalytic cracking reaction[J]. Catalysis Communications, 2009, 10(14): 1787-1790. |
| [28] | KUBO Kohei, IIDA Hajime, NAMBA Seitaro, et al. Effect of steaming on acidity and catalytic performance of H-ZSM-5 and P/H-ZSM-5 as naphtha to olefin catalysts[J]. Microporous and Mesoporous Materials, 2014, 188: 23-29. |
| [29] | 宋守强, 李明罡, 李黎声, 等. 磷改性ZSM-5分子筛的水热稳定性[J]. 石油学报(石油加工), 2014, 30(2): 194-203. |
| SONG Shouqiang, LI Minggang, LI Lisheng, et al. Hydrothermal stability of P-modified ZSM-5 molecular sieves[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2014, 30(2): 194-203. | |
| [30] | Jian LYU, HUA Zile, GE Tongguang, et al. Phosphorus modified hierarchically structured ZSM-5 zeolites for enhanced hydrothermal stability and intensified propylene production from 1-butene cracking[J]. Microporous and Mesoporous Materials, 2017, 247: 31-37. |
| [31] | NI Ne, GAO Xiuzhi, XING Enhui, et al. Phosphorus promotion on hydrothermal stability of ZSM-5 by P precursors with different molecular sizes[J]. Microporous and Mesoporous Materials, 2023, 360: 112706. |
| [32] | BAO Shuhao, GUO Mengting, LIU Bo, et al. Effect of P sources on the phosphorus modified MCM-22 for n-hexane catalytic cracking[J]. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132(1): 431-447. |
| [1] | QIN Fei, ZHANG Zhi, SONG Guangchun, WANG Wuchang, LI Yuxing, WANG Shixin, HE Sicheng, WANG Jiangyan. Advances in research on the molecular dynamics behaviors of hydrate-based hydrogen storage [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 112-123. |
| [2] | XU Cong, FENG Yingjie, LIU Dongbing, XIE Zaiku. Review of zeolite confined Pt-based catalysts for propane dehydrogenation [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4954-4967. |
| [3] | CHEN Zizhao, HE Fangshu, HU Qiang, YANG Yang, CHEN Hanping, YANG Haiping. Research progress on anti-carbon deposition Ni-based catalysts for dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4968-4978. |
| [4] | WANG Zhen, ZHANG Yaoyuan, WU Qin, SHI Daxin, CHEN Kangcheng, LI Hansheng. Development of Ni/Al2O3-based catalysts for the dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4979-4998. |
| [5] | ZHANG Haipeng, QIN Shanshan, WANG Yuxuan, YU Haibiao. Preparation of 3.0F-Ag x Co catalysts for N2O decomposition [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4999-5005. |
| [6] | LI Zhifu, YANG Xiaodong, WANG Baocai, HU Changliu, PEI Jikai, YAN Longfang, WU Ruifang, ZHANG Changsheng, WANG Yongzhao. Synthesis and properties of high temperature retarder HJ-1 [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5092-5100. |
| [7] | WANG Wenjun, LIU Ruixin, WANG Jun, ZHANG Qinglei, HOU Li’an. Research progress of visible light degradation of indoor VOCs by titanium dioxide materials [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5351-5362. |
| [8] | WANG Xiaoguang, DONG Qing, LANG Wenli, HONG Xiangxin, HUANG Zhenxiang, TAN Fengyu, LEI Yizhu, YU Ziyi. Progress on emission reduction and resource utilization of ultra-low concentration methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5363-5376. |
| [9] | LU Ling, YU Lei, GU Xia, LAI Minming, ZHOU Kai, WANG Yapeng, LI Xiang. Efficient thermocatalytic and resource utilization of pharmaceutical waste salt [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5432-5441. |
| [10] | WANG Hao, LI Mengqi, WANG Qingji, WANG Lingyun, LUO Zhen, SONG Quanwei, LI Xingchun, HE Xuwen. Short-process treatment technology for ex-situ remediation of groundwater in oil-contaminated sites [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5491-5502. |
| [11] | LI Zeng, ZHAO Yunpeng, LI Yuhui, LIU Nan, ZHU Chunmeng, SHI Xiaogang, GAO Jinsen, LAN Xingying. Abnormal diagnosis of catalyst loss for FCC disengager based on CFD simulation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4430-4442. |
| [12] | HU Jiazhi, JIANG Xinyu, LI Fan, LI Zhihui. Surface catalytic reaction model of the near-space vehicle reentry DSMC method [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4478-4487. |
| [13] | LI Xiang, WU Zhangyong, JIANG Jiajun, ZHU Qichen, GONG Qiu. Tribological properties of seawater-based MoS2/SiC binary nanofluids [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4050-4060. |
| [14] | LUO Siling, AI Jianping, LI Wenkui, WANG Yi, CHENG Lihong, WAN Yun, HUANG Long, LI Xibao. Research progress on degradation of typical antibiotics by advanced oxidation processes [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4169-4189. |
| [15] | MA Jing, MA Yulong, ZHU Li, QIAO Song, SUN Yonggang, JI Wenxin. Activation of silica-aluminium minerals of coal gasification coarse slag by different methods [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4251-4266. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |