Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (5): 2625-2641.DOI: 10.16085/j.issn.1000-6613.2024-1744
• Renewable energy utilization • Previous Articles
LIU Wei(
), HOU Xuelan, YANG Guidong(
)
Received:2024-10-26
Revised:2025-01-08
Online:2025-05-20
Published:2025-05-25
Contact:
YANG Guidong
通讯作者:
杨贵东
作者简介:刘威(1995—),男,博士研究生,研究方向为电催化合成氨。E-mail: LW2020@stu.xjtu.edu.cn。
基金资助:CLC Number:
LIU Wei, HOU Xuelan, YANG Guidong. Green hydrogen-ammonia cycle: Current status and perspective[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2625-2641.
刘威, 侯雪兰, 杨贵东. 氢-氨绿色循环研究进展与展望[J]. 化工进展, 2025, 44(5): 2625-2641.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1744
| 1 | DILLMAN K J, HEINONEN J. A ‘just’ hydrogen economy: A normative energy justice assessment of the hydrogen economy[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112648. |
| 2 | HASSANPOURYOUZBAND Aliakbar, WILKINSON Mark, Stuart HASZELDINE R. Hydrogen energy futures-foraging or farming?[J]. Chemical Society Reviews, 2024, 53(5): 2258-2263. |
| 3 | ZHANG Tongtong, URATANI Joao, HUANG Yixuan, et al. Hydrogen liquefaction and storage: Recent progress and perspectives[J]. Renewable and Sustainable Energy Reviews, 2023, 176: 113204. |
| 4 | ANDERSSON Joakim, Stefan GRÖNKVIST. Large-scale storage of hydrogen[J]. International Journal of Hydrogen Energy, 2019, 44(23): 11901-11919. |
| 5 | VALERA-MEDINA A, XIAO H, OWEN-JONES M, et al. Ammonia for power[J]. Progress in Energy and Combustion Science, 2018, 69: 63-102. |
| 6 | ERFANI Navid, BAHARUDIN Luqmanulhakim, WATSON Matthew. Recent advances and intensifications in Haber-Bosch ammonia synthesis process[J]. Chemical Engineering and Processing: Process Intensification, 2024, 204: 109962. |
| 7 | MACFARLANE Douglas R, CHEREPANOV Pavel V, CHOI Jaecheol, et al. A roadmap to the ammonia economy[J]. Joule, 2020, 4(6): 1186-1205. |
| 8 | LUCENTINI Ilaria, Xènia GARCIA, VENDRELL Xavier, et al. Review of the decomposition of ammonia to generate hydrogen[J]. Industrial & Engineering Chemistry Research, 2021, 60(51): 18560-18611. |
| 9 | MASHHADIMOSLEM Hossein, SAFARZADEH KHOSROWSHAHI Mobin, DELPISHEH Mostafa, et al. Green ammonia to Hydrogen: Reduction and oxidation catalytic processes[J]. Chemical Engineering Journal, 2023, 474: 145661. |
| 10 | JIANG Lilong, FU Xianzhi. An ammonia-hydrogen energy roadmap for carbon neutrality: Opportunity and challenges in China[J]. Engineering, 2021, 7(12): 1688-1691. |
| 11 | HOU Xuelan, LI Yiyang, ZHANG Hang, et al. Black titanium oxide: Synthesis, modification, characterization, physiochemical properties, and emerging applications for energy conversion and storage, and environmental sustainability[J]. Chemical Society Reviews, 2024, 53(21): 10660-10708. |
| 12 | ZHANG Shuai, ZHAO Yunxuan, SHI Run, et al. Photocatalytic ammonia synthesis: Recent progress and future[J]. EnergyChem, 2019, 1(2): 100013. |
| 13 | SHI Yonghui, ZHAO Zhanfeng, YANG Dong, et al. Engineering photocatalytic ammonia synthesis[J]. Chemical Society Reviews, 2023, 52(20): 6938-6956. |
| 14 | WANG Miao, KHAN Mohd A, MOHSIN Imtinan, et al. Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber-Bosch processes?[J]. Energy & Environmental Science, 2021, 14(5): 2535-2548. |
| 15 | Dimitrij JEŠIĆ, POMEROY Brett, KAMAL Khaja Mohaideen, et al. Photo- and photoelectrocatalysis in nitrogen reduction reactions to ammonia: Interfaces, mechanisms, and modeling simulations[J]. Advanced Energy and Sustainability Research, 2024,5(9): 2400083. |
| 16 | VAN DER HAM Cornelis J M, KOPER Marc T M, HETTERSCHEID Dennis G H. Challenges in reduction of dinitrogen by proton and electron transfer[J]. Chemical Society Reviews, 2014, 43(15): 5183-5191. |
| 17 | Egill SKÚLASON, BLIGAARD Thomas, Sigrídur GUDMUNDSDÓTTIR, et al. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction[J]. Physical Chemistry Chemical Physics, 2012, 14(3): 1235-1245. |
| 18 | LIU Huazhang. Ammonia synthesis catalyst 100 years: Practice, enlightenment and challenge[J]. Chinese Journal of Catalysis, 2014, 35(10): 1619-1640. |
| 19 | CHATTERJEE Studipta, PARSAPUR Rajesh Kumar, HUANG Kuowei. Limitations of ammonia as a hydrogen energy carrier for the transportation sector[J]. ACS Energy Letters, 2021, 6(12): 4390-4394. |
| 20 | CAMELI Fabio, KOUROU Afroditi, ROSA Victor, et al. Conceptual process design and technoeconomic analysis of an e-ammonia plant: Green H2 and cryogenic air separation coupled with Haber-Bosch process[J]. International Journal of Hydrogen Energy, 2024, 49: 1416-1425. |
| 21 | LEE Boreum, WINTER Lea R, LEE Hyunjun, et al. Pathways to a green ammonia future[J]. ACS Energy Letters, 2022, 7(9): 3032-3038. |
| 22 | LEE Boreum, Dongjun LIM, LEE Hyunjun, et al. Which water electrolysis technology is appropriate? : Critical insights of potential water electrolysis for green ammonia production[J]. Renewable and Sustainable Energy Reviews, 2021, 143: 110963. |
| 23 | SCHRAUZER G N, GUTH T D. Photolysis of water and photoreduction of nitrogen on titanium dioxide[J]. Journal of the American Chemical Society, 1977, 99(22): 7189-7193. |
| 24 | XIE Xiaoying, XIAO Pin, FANG Weihai, et al. Probing photocatalytic nitrogen reduction to ammonia with water on the rutile TiO2 (110) surface by first-principles calculations[J]. ACS Catalysis, 2019, 9(10): 9178-9187. |
| 25 | HIRAKAWA Hiroaki, HASHIMOTO Masaki, SHIRAISHI Yasuhiro, et al. Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide[J]. Journal of the American Chemical Society, 2017, 139(31): 10929-10936. |
| 26 | LIU Chuangwei, HAO Derek, YE Jin, et al. Knowledge-driven design and lab-based evaluation of B-doped TiO2 photocatalysts for ammonia synthesis[J]. Advanced Energy Materials, 2023, 13(8): 2204126. |
| 27 | ZHAO Yunxuan, ZHAO Yufei, SHI Run, et al. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm[J]. Advanced Materials, 2019, 31(16): 1806482. |
| 28 | NAIR Radhika V, GAYATHRI P K, GUMMALURI Venkata Siva, et al. Large bandgap narrowing in rutile TiO2 aimed towards visible light applications and its correlation with vacancy-type defects history and transformation[J]. Journal of Physics D: Applied Physics, 2018, 51(4): 045107. |
| 29 | XIA Mengyang, CHONG Ben, GONG Xiangjiao, et al. Ti2+ site-promoted N≡≡N bond activation in LaTiO3– x nanosheets for nitrogen photofixation[J]. ACS Catalysis, 2023, 13(18): 12350-12362. |
| 30 | SONG Qian, SUN Congcong, WANG Zheng, et al. Directed charge transfer in all solid state heterojunction of Fe doped MoS2 and C-TiO2 nanosheet for enhanced nitrogen photofixation[J]. Materials Today Physics, 2021, 21: 100563. |
| 31 | LI Hao, SHANG Jian, AI Zhihui, et al. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets[J]. Journal of the American Chemical Society, 2015, 137(19): 6393-6399. |
| 32 | ZHAO Yunxuan, ZHENG Lirong, SHI Run, et al. Alkali etching of layered double hydroxide nanosheets for enhanced photocatalytic N2 reduction to NH3 [J]. Advanced Energy Materials, 2020, 10(34): 2002199. |
| 33 | LI Lu, WANG Yichen, VANKA Srinivas, et al. Nitrogen photofixation over Ⅲ-nitride nanowires assisted by ruthenium clusters of low atomicity[J]. Angewandte Chemie International Edition, 2017, 56(30): 8701-8705. |
| 34 | GUAN Yeqin, WEN Hong, CUI Kaixun, et al. Light-driven ammonia synthesis under mild conditions using lithium hydride[J]. Nature Chemistry, 2024, 16(3): 373-379. |
| 35 | REN Yongwen, LI Shaofeng, YU Chang, et al. NH3 electrosynthesis from N2 molecules: Progresses, challenges, and future perspectives[J]. Journal of the American Chemical Society, 2024, 146(10): 6409-6421. |
| 36 | DENG Jiao, IÑIGUEZ Jesus A, LIU Chong. Electrocatalytic nitrogen reduction at low temperature[J]. Joule, 2018, 2(5): 846-856. |
| 37 | LIU Sisi, QIAN Tao, WANG Mengfan, et al. Proton-filtering covalent organic frameworks with superior nitrogen penetration flux promote ambient ammonia synthesis[J]. Nature Catalysis, 2021, 4: 322-331. |
| 38 | REN Yongwen, YU Chang, HAN Xiaotong, et al. Methanol-mediated electrosynthesis of ammonia[J]. ACS Energy Letters, 2021, 6(11): 3844-3850. |
| 39 | HU Qikun, YANG Ke, PENG Ouwen, et al. Ammonia electrosynthesis from nitrate using a ruthenium-copper cocatalyst system: A full concentration range study[J]. Journal of the American Chemical Society, 2024, 146(1): 668-676. |
| 40 | CHEN Fengyang, ELGAZZAR Ahmad, PECAUT Stephanie, et al. Electrochemical nitrate reduction to ammonia with cation shuttling in a solid electrolyte reactor[J]. Nature Catalysis, 2024, 7: 1032-1043. |
| 41 | FICHTER Fr, GIRARD Pierre, ERLENMEYER Hans. Elektrolytische bindung von komprimiertem stickstoff bei gewöhnlicher temperatur[J]. Helvetica Chimica Acta, 1930, 13(6): 1228-1236. |
| 42 | MCENANEY Joshua M, SINGH Aayush R, SCHWALBE Jay A, et al. Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure[J]. Energy & Environmental Science, 2017, 10(7): 1621-1630. |
| 43 | TSUNETO Akira, KUDO Akihiko, SAKATA Tadayoshi. Efficient electrochemical reduction of N2 to NH3 catalyzed by lithium[J]. Chemistry Letters, 1993, 22(5): 851-854. |
| 44 | DU Hoang-Long, CHATTI Manjunath, HODGETTS Rebecca Y, et al. Electroreduction of nitrogen with almost 100% current-to-ammonia efficiency[J]. Nature, 2022, 609(7928): 722-727. |
| 45 | LI Shaofeng, ZHOU Yuanyuan, LI Katja, et al. Electrosynthesis of ammonia with high selectivity and high rates via engineering of the solid-electrolyte interphase[J]. Joule, 2022, 6(9): 2083-2101. |
| 46 | FU Xianbiao, PEDERSEN Jakob B, ZHOU Yuanyuan, et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation[J]. Science, 2023, 379(6633): 707-712. |
| 47 | LI Shaofeng, ZHOU Yuanyuan, FU Xianbiao, et al. Long-term continuous ammonia electrosynthesis[J]. Nature, 2024, 629(8010): 92-97. |
| 48 | Michael GRÄTZEL. Photoelectrochemical cells[J]. Nature, 2001, 414(6861): 338-344. |
| 49 | Muataz ALI, ZHOU Fengling, CHEN Kun, et al. Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon[J]. Nature Communications, 2016, 7: 11335. |
| 50 | ZHENG Jianyun, Yanhong LYU, QIAO Man, et al. Photoelectrochemical synthesis of ammonia on the aerophilic-hydrophilic heterostructure with 37.8% efficiency[J]. Chem, 2019, 5(3): 617-633. |
| 51 | PERAMAIAH Karthik, RAMALINGAM Vinoth, FU Huichun, et al. Optically and electrocatalytically decoupled Si photocathodes with a porous carbon nitride catalyst for nitrogen reduction with over 61.8% faradaic efficiency[J]. Advanced Materials, 2021, 33(18): e2100812. |
| 52 | JANG Youn Jeong, LINDBERG Ann E, LUMLEY Margaret A, et al. Photoelectrochemical nitrogen reduction to ammonia on cupric and cuprous oxide photocathodes[J]. ACS Energy Letters, 2020, 5(6): 1834-1839. |
| 53 | HAN Gaofeng, LI Feng, CHEN Zhiwen, et al. Mechanochemistry for ammonia synthesis under mild conditions[J]. Nature Nanotechnology, 2021, 16(3): 325-330. |
| 54 | KIM Jong-Hoon, DAI Tianyi, YANG Mihyun, et al. Achieving volatile potassium promoted ammonia synthesis via mechanochemistry[J]. Nature Communications, 2023, 14(1): 2319. |
| 55 | WINTER Lea R, CHEN Jingguang G. N2 fixation by plasma-activated processes[J]. Joule, 2021, 5(2): 300-315. |
| 56 | HOLLEVOET Lander, JARDALI Fatme, GORBANEV Yury, et al. Towards green ammonia synthesis through plasma-driven nitrogen oxidation and catalytic reduction[J]. Angewandte Chemie International Edition, 2020, 59(52): 23825-23829. |
| 57 | LIU Wei, XIA Mengyang, ZHAO Chao, et al. Efficient ammonia synthesis from the air using tandem non-thermal plasma and electrocatalysis at ambient conditions[J]. Nature Communications, 2024, 15(1): 3524. |
| 58 | MENG Zhe, YAO Jiaxin, SUN Changning, et al. Efficient ammonia production beginning from enhanced air activation[J]. Advanced Energy Materials, 2022, 12(38): 2202105. |
| 59 | LU Xiuyuan, ZHANG Jing, CHEN Wenkai, et al. Kinetic and mechanistic analysis of NH3 decomposition on Ru(0001), Ru(111) and Ir(111) surfaces[J]. Nanoscale Advances, 2021, 3(6): 1624-1632. |
| 60 | SUN Shangcong, JIANG Qiuqiao, ZHAO Dongyue, et al. Ammonia as hydrogen carrier: Advances in ammonia decomposition catalysts for promising hydrogen production[J]. Renewable and Sustainable Energy Reviews, 2022, 169: 112918. |
| 61 | BRUNAUER Stephen, LOVE Katharinf S, KEENAN Robert G. Adsorption of nitrogen and the mechanism of ammonia decomposition over iron catalysts[J]. Journal of the American Chemical Society, 1942, 64(4): 751-758. |
| 62 | PETERS Stefan, ABDEL-MAGEED Ali M, WOHLRAB Sebastian. Thermocatalytic ammonia decomposition-status and current research demands for a carbon-free hydrogen fuel technology[J]. ChemCatChem, 2023, 15(2): e202201185. |
| 63 | SU Tianxu, GUAN Bin, ZHOU Jiefei, et al. Review on Ru-based and Ni-based catalysts for ammonia decomposition: Research status, reaction mechanism, and perspectives[J]. Energy & Fuels, 2023, 37(12): 8099-8127. |
| 64 | FANG Huihuang, WU Simson, AYVALI Tugce, et al. Dispersed surface Ru ensembles on MgO(111) for catalytic ammonia decomposition[J]. Nature Communications, 2023, 14(1): 647. |
| 65 | GANLEY J C, THOMAS F S, SEEBAUER E G, et al. A priori catalytic activity correlations: The difficult case of hydrogen production from ammonia[J]. Catalysis Letters, 2004, 96(3): 117-122. |
| 66 | YAO Yonggang, LIU Zhenyu, XIE Pengfei, et al. Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts[J]. Science Advances, 2020, 6(11): eaaz0510. |
| 67 | XIE Pengfei, YAO Yonggang, HUANG Zhennan, et al. Highly efficient decomposition of ammonia using high-entropy alloy catalysts[J]. Nature Communications, 2019, 10(1): 4011. |
| 68 | QIU Yu, FU Enkang, GONG Feng, et al. Catalyst support effect on ammonia decomposition over Ni/MgAl2O4 towards hydrogen production[J]. International Journal of Hydrogen Energy, 2022, 47(8): 5044-5052. |
| 69 | NAGAOKA Katsutoshi, EBOSHI Takaaki, TAKEISHI Yuma, et al. Carbon-free H2 production from ammonia triggered at room temperature with an acidic RuO2/γ-Al2O3 catalyst[J]. Science Advances, 2017, 3(4): e1602747. |
| 70 | WU Simson, TSANG Shik Chi Edman. Renewable N-cycle catalysis[J]. Trends in Chemistry, 2021, 3(8): 660-673. |
| 71 | 王中华, 郑淞生, 姚育栋, 等. 电催化分解氨制氢研究进展[J]. 化工学报, 2022, 73(3): 1008-1021. |
| WANG Zhonghua, ZHENG Songsheng, YAO Yudong, et al. Research progress on electrocatalytic decomposition of ammonia for hydrogen production[J]. CIESC Journal, 2022, 73(3): 1008-1021. | |
| 72 | LITTLE Daniel J, SMITH III, Milton R, HAMANN Thomas W. Electrolysis of liquid ammonia for hydrogen generation[J]. Energy & Environmental Science, 2015, 8(9): 2775-2781. |
| 73 | HANADA Nobuko, HINO Satoshi, ICHIKAWA Takayuki, et al. Hydrogen generation by electrolysis of liquid ammonia[J]. Chemical Communications, 2010, 46(41): 7775-7777. |
| 74 | GOSHOME Kiyotaka, YAMADA Takahiro, MIYAOKA Hiroki, et al. High compressed hydrogen production via direct electrolysis of liquid ammonia[J]. International Journal of Hydrogen Energy, 2016, 41(33): 14529-14534. |
| 75 | 姚育栋, 王中华, 林志彬, 等. Pt-Ir共沉积电位对电解氨水制氢的性能影响[J]. 化工学报, 2020, 71(8): 3780-3788. |
| YAO Yudong, WANG Zhonghua, LIN Zhibin, et al. Influences of Pt-Ir electro-codeposition potentials on hydrogen production with ammonia electrolysis[J]. CIESC Journal, 2020, 71(8): 3780-3788. | |
| 76 | Dae-Kwang LIM, PLYMILL Austin B, PAIK Haemin, et al. Solid acid electrochemical cell for the production of hydrogen from ammonia[J]. Joule, 2020, 4(11): 2338-2347. |
| 77 | SALEHABADI Ali, ZANGANEH Jafar, MOGHTADERI Behdad. Mixed metal oxides in catalytic ammonia cracking process for green hydrogen production: A review[J]. International Journal of Hydrogen Energy, 2024, 63: 828-843. |
| 78 | ZHANG Shijie, HE Zuoli, LI Xuan, et al. Building heterogeneous nanostructures for photocatalytic ammonia decomposition[J]. Nanoscale Advances, 2020, 2(9): 3610-3623. |
| 79 | YUZAWA Hayato, MORI Takamasa, ITOH Hideaki, et al. Reaction mechanism of ammonia decomposition to nitrogen and hydrogen over metal loaded titanium oxide photocatalyst[J]. The Journal of Physical Chemistry C, 2012, 116(6): 4126-4136. |
| 80 | WANG Bingzheng, KONG Hui, WANG Hongsheng, et al. Kinetic and thermodynamic analyses of mid/low-temperature ammonia decomposition in solar-driven hydrogen permeation membrane reactor[J]. International Journal of Hydrogen Energy, 2019, 44(49): 26874-26887. |
| 81 | OBATA Kazutaka, KISHISHITA Kensuke, OKEMOTO Atsushi, et al. Photocatalytic decomposition of NH3 over TiO2 catalysts doped with Fe[J]. Applied Catalysis B: Environmental, 2014, 160: 200-203. |
| 82 | VIKRANT Kumar, KIM Ki-Hyun, DONG Fan, et al. Photocatalytic platforms for removal of ammonia from gaseous and aqueous matrixes: Status and challenges[J]. ACS Catalysis, 2020, 10(15): 8683-8716. |
| 83 | ABDUL RAZAK Syaahidah, MAHADI Abdul Hanif, THOTAGAMUGE Roshan, et al. Photocatalytic hydrogen gas production from NH3 and alkylamine: Route to zero carbon emission energy[J]. Catalysis Letters, 2023, 153(4): 1013-1023. |
| 84 | LI Yanan, CHEN Zhaoyang, BAO Shujuan, et al. Ultrafine TiO2 encapsulated in nitrogen-doped porous carbon framework for photocatalytic degradation of ammonia gas[J]. Chemical Engineering Journal, 2018, 331: 383-388. |
| 85 | JUNG Sang-Chul, CHUNG Kyong-Hwan, CHOI Jaewook, et al. Photocatalytic hydrogen production using liquid phase plasma from ammonia water over metal ion-doped TiO2 photocatalysts[J]. Catalysis Today, 2022, 397: 165-172. |
| 86 | LIN Jingkai, WANG Yantao, TIAN Wenjie, et al. Macroporous carbon-nitride-supported transition-metal single-atom catalysts for photocatalytic hydrogen production from ammonia splitting[J]. ACS Catalysis, 2023, 13(17): 11711-11722. |
| 87 | LI Fang, SUN Liwen, LIU Yanbiao, et al. A ClO-mediated photoelectrochemical filtration system for highly-efficient and complete ammonia conversion[J]. Journal of Hazardous Materials, 2020, 400: 123246. |
| 88 | NAYA Shin-ichi, TERANISHI Miwako, FUJISHIMA Musashi, et al. Generation of plasmonic and chemical hot spots near the reaction sites in solar-driven photoelectrochemical ammonia splitting[J]. ACS Electrochemistry, 2025, 1(1): 82-92. |
| 89 | ELYSABETH Tiur, MULIA Kamarza, IBADURROHMAN Muhammad, et al. A comparative study of CuO deposition methods on titania nanotube arrays for photoelectrocatalytic ammonia degradation and hydrogen production[J]. International Journal of Hydrogen Energy, 2021, 46(53): 26873-26885. |
| 90 | XIA Chengkai, LI Yuankai, KIM Heeho, et al. A highly activated iron phosphate over-layer for enhancing photoelectrochemical ammonia decomposition[J]. Journal of Hazardous Materials, 2021, 408: 124900. |
| 91 | LI Jinglin, SHENG Bowen, CHEN Yiqing, et al. Utilizing full-spectrum sunlight for ammonia decomposition to hydrogen over GaN nanowires-supported Ru nanoparticles on silicon[J]. Nature Communications, 2024, 15(1): 7393. |
| 92 | YUAN Yigao, ZHOU Linan, ROBATJAZI Hossein, et al. Earth-abundant photocatalyst for H2 generation from NH3 with light-emitting diode illumination[J]. Science, 2022, 378(6622): 889-893. |
| 93 | YI Yanhui, WANG Li, GUO Yanjun, et al. Plasma-assisted ammonia decomposition over Fe-Ni alloy catalysts for CO x -Free hydrogen[J]. AIChE Journal, 2019, 65(2): 691-701. |
| 94 | SEYFELI Rukan CAN, VARISLI Dilek. Ammonia decomposition reaction to produce CO x -free hydrogen using carbon supported cobalt catalysts in microwave heated reactor system[J]. International Journal of Hydrogen Energy, 2020, 45(60): 34867-34878. |
| [1] | WANG Shuizhong, SONG Guoyong. Selective hydrogenolysis of lignin into functional monophenols and their high-value utilization [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2535-2540. |
| [2] | WANG Jia, SUN Danhui, QIAO Yifan, FAN Xiufang, ZHAO Lidong, HE Lei, LU Anhui. Catalytic conversion of ethanol to high value-added chemicals [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2587-2597. |
| [3] | GAO Jiangang, JIANG Yapeng, BAO Baoqing, WANG Shuqi, CUI Shuming. Green methanol and green ammonia synthesis by green hydrogen [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1987-1997. |
| [4] | SONG Kunli, XIAO Lei, MA Dandan, XIAO Peng, YANG Shasha, SHI Jianwen. A review of ammonia selective denitrification catalysts at ultra-low temperature [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2028-2035. |
| [5] | ZHANG Pei, GAO Lining, DING Siqing, LI Li, ZHU Xiruo, HE Rui. Preparation of g-C3N4/TiO2 heterojunction catalyst and its photocatalytic NO degradation performance [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2045-2056. |
| [6] | MA Xiaoyu, ZHANG Yan, ZHOU Awu, LI Hanbing, YANG Feihua, LI Jianrong. Research progress on preparation and photocatalytic performance of MOF-on-MOF heterojunctions [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1417-1431. |
| [7] | ZHANG Xin’er, PEI Liujun, ZHOU Yudie, JIN Kaili, WANG Jiping. Progress of TiO2-based photocatalysts for hydrogen production by water splitting with solar energy [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1298-1308. |
| [8] | ZHU Guoyu, GE Qi, FU Mingli. Durability testing and life prediction of methanol reforming catalysts for hydrogen production [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1338-1346. |
| [9] | ZHANG Xinyu, TAO Mengying, YU Xiaoting, ZHAO Zhongxing, ZHAO Zhenxia. Laccase immobilized on mesoporous metal-organic framework and its performance of reactive brilliant blue KN-R degradation [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1758-1767. |
| [10] | ZHANG Tiantian, LIU Xia, ZHANG Hongfei, LI Qian, ZHOU Hongyu, LI Binglin. Green biosynthesis of docosahexaenoic acid-rich phosphatidylserine in solvent-free system [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1033-1041. |
| [11] | YANG Fan, ZHAO Yitao, ZHU Xuedong, WANG Darui. Application of ternary spinel and twined ZSM-5 zeolite in methylation of benzene with carbon dioxide [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 856-866. |
| [12] | LI Zhixing, DAI Weijiong, LIU Xiangyang, WANG Fei, LI Ruifeng. Insight into structure and reactivity of ZSM-5 [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 788-808. |
| [13] | ZHANG Xiaofang, GAN Wen, JI Zhijiao, XU Ming, LI Chufu, HE Guangli. Present situation and strategy of electrolytes for electrochemical nitrogen reduction to ammonia [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 809-819. |
| [14] | FANG Biyao, QIU Jianhao, LI Yixin, YAO Jianfeng. Lignocellulose-derived biochar-modified semiconductors and their photocatalytic applications [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 957-970. |
| [15] | JIANG Liping, ZHANG Xueqiao, ZHONG Xiaojuan, WEI Yufan, XIAO Li, GUO Xujing, YANG Yijin. Optimization of acid leaching process of iron from vanadium slag and preparation of composite photocatalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 538-548. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |