Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (3): 1243-1252.DOI: 10.16085/j.issn.1000-6613.2024-0478
• Chemical processes and equipment • Previous Articles Next Articles
SHE Yonglu(
), XU Qiang(
), LUO Xinyi, NIE Tengfei, GUO Liejin
Received:2024-03-25
Revised:2024-05-08
Online:2025-04-16
Published:2025-03-25
Contact:
XU Qiang
通讯作者:
徐强
作者简介:佘永璐(1999—),女,博士研究生。E-mail:yonglu_she@stu.xjtu.edu.cn。
基金资助:CLC Number:
SHE Yonglu, XU Qiang, LUO Xinyi, NIE Tengfei, GUO Liejin. Effect of reaction temperature on bubble dynamics and mass transfer characteristics on photoanode surface[J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1243-1252.
佘永璐, 徐强, 罗欣怡, 聂腾飞, 郭烈锦. 反应温度对光电极表面气泡动力学及传质特性的影响[J]. 化工进展, 2025, 44(3): 1243-1252.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0478
| 1 | CHENG Wenhui, DE LA CALLE Alberto, ATWATER Harry A, et al. Hydrogen from sunlight and water: A side-by-side comparison between photoelectrochemical and solar thermochemical water-splitting[J]. ACS Energy Letters, 2021, 6(9): 3096-3113. |
| 2 | ZHOU Peng, NAVID Ishtiaque Ahmed, MA Yongjin, et al. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting[J]. Nature, 2023, 613(7942): 66-70. |
| 3 | HISATOMI Takashi, KUBOTA Jun, DOMEN Kazunari. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting[J]. Chemical Society Reviews, 2014, 43(22): 7520-7535. |
| 4 | DORFI Anna E, WEST Alan C, ESPOSITO Daniel V. Quantifying losses in photoelectrode performance due to single hydrogen bubbles[J]. The Journal of Physical Chemistry C, 2017, 121(48): 26587-26597. |
| 5 | Isaac HOLMES-GENTLE, Franky BEDOYA-LORA, ALHERSH Faye, et al. Optical losses at gas evolving photoelectrodes: Implications for photoelectrochemical water splitting[J]. The Journal of Physical Chemistry C, 2019, 123(1): 17-28. |
| 6 | QIN Jingshan, XIE Tianhui, ZHOU Daojin, et al. Kinetic study of electrochemically produced hydrogen bubbles on Pt electrodes with tailored geometries[J]. Nano Research, 2021, 14(7): 2154-2159. |
| 7 | HERNÁNDEZ S, BARBERO G, SARACCO G, et al. Considerations on oxygen bubble formation and evolution on BiVO4 porous anodes used in water splitting photoelectrochemical cells[J]. The Journal of Physical Chemistry C, 2015, 119(18): 9916-9925. |
| 8 | 陈娟雯, 郭烈锦, 胡晓玮, 等. TiO2光电极表面气泡相互作用规律研究[J]. 工程热物理学报, 2018, 39(3): 550-554. |
| CHEN Juanwen, GUO Liejin, HU Xiaowei, et al. Study on bubble interaction on TiO2 photoelectrode[J]. Journal of Engineering Thermophysics, 2018, 39(3): 550-554. | |
| 9 | HU Xiaowei, CAO Zhenshan, WANG Yechun, et al. Single photogenerated bubble at gas-evolving TiO2 nanorod-array electrode[J]. Electrochimica Acta, 2016, 202: 175-185. |
| 10 | WANG Mengsha, NIE Tengfei, SHE Yonglu, et al. Study on the behavior of single oxygen bubble regulated by salt concentration in photoelectrochemical water splitting[J]. International Journal of Hydrogen Energy, 2023, 48(61): 23387-23401. |
| 11 | XU Qiang, LIANG Liang, NIE Tengfei, et al. Effect of electrolyte pH on oxygen bubble behavior in photoelectrochemical water splitting[J]. The Journal of Physical Chemistry C, 2023, 127(11): 5308-5320. |
| 12 | LUO Xinyi, XU Qiang, NIE Tengfei, et al. Influence of subatmospheric pressure on bubble evolution on the TiO2 photoelectrode surface[J]. Physical Chemistry Chemical Physics, 2023, 25(23): 16086-16104. |
| 13 | LI Mingbo, MA Xiaotong, EISENER Julian, et al. How bulk nanobubbles are stable over a wide range of temperatures[J]. Journal of Colloid and Interface Science, 2021, 596: 184-198. |
| 14 | MA Benchi, LIN Hua, ZHU Yizhou, et al. A new Concentrated Photovoltaic Thermal-Hydrogen system with photocatalyst suspension as optical liquid filter[J]. Renewable Energy, 2022, 194: 1221-1232. |
| 15 | 冯浩, 张莹, 刘东, 等. 光电化学反应中界面气泡多尺度作用机制的研究进展[J]. 科学通报, 2023, 68(25): 3275-3292. |
| FENG Hao, ZHANG Ying, LIU Dong, et al. Advances in multiscale interaction of interfacial gas bubble evolution in photoelectrochemical reactions[J]. Chinese Science Bulletin, 2023, 68(25): 3275-3292. | |
| 16 | VOGT H. On the gas-evolution efficiency of electrodes Ⅰ-Theoretical[J]. Electrochimica Acta, 2011, 56(3): 1409-1416. |
| 17 | VOGT H. On the gas-evolution efficiency of electrodes. Ⅱ-Numerical analysis[J]. Electrochimica Acta, 2011, 56(5): 2404-2410. |
| 18 | CAO Zhenshan, ZHANG Bo, FENG Yuyang, et al. Mass transfer mechanism during bubble evolution on the surface of photoelectrode[J]. Electrochimica Acta, 2022, 434: 141293. |
| 19 | CAO Zhenshan, FENG Yuyang, ZHANG Bo, et al. Distribution characteristics of multiphysics around the bubble on the surface of photoelectrode[J]. Journal of the Electrochemical Society, 2022, 169(12): 126504. |
| 20 | 郭烈锦, 曹振山, 王晔春, 等. 太阳能光催化分解水气泡动力学研究进展[J]. 西安交通大学学报, 2023, 57(3): 1-22. |
| GUO Liejin, CAO Zhenshan, WANG Yechun, et al. Review of bubble dynamics in solar photocatalytic water splitting[J]. Journal of Xi’an Jiaotong University, 2023, 57(3): 1-22. | |
| 21 | YANG Xuegeng, KARNBACH Franziska, UHLEMANN Margitta, et al. Dynamics of single hydrogen bubbles at a platinum microelectrode[J]. Langmuir, 2015, 31(29): 8184-8193. |
| 22 | ZENG Binglin, CHONG Kai Leong, WANG Yuliang, et al. Periodic bouncing of a plasmonic bubble in a binary liquid by competing solutal and thermal Marangoni forces[J]. Proceedings of the National Academy of Sciences, 2021, 118(23): e2103215118. |
| 23 | NIE Tengfei, LI Zhiqing, LUO Xinyi, et al. Single bubble dynamics on a TiO2 photoelectrode surface during photoelectrochemical water splitting[J]. Electrochimica Acta, 2022, 436: 141394. |
| 24 | NATH Saurabh, RICARD Guillaume, JIN Panlin, et al. Thermal Marangoni bubbles[J]. Soft Matter, 2022, 18(38): 7422-7426. |
| 25 | LIU Ya, JIANG Jiangang, XU Quan, et al. Photoelectrochemical performance of CdS nanorods grafted vertically aligned TiO2 nanorods[J]. Materials Research Bulletin, 2013, 48(11): 4548-4554. |
| 26 | FALLISCH Arne, SCHELLHASE Leon, FRESKO Jan, et al. Hydrogen concentrator demonstrator module with 19.8% solar-to-hydrogen conversion efficiency according to the higher heating value[J]. International Journal of Hydrogen Energy, 2017, 42(43): 26804-26815. |
| 27 | Damaris FERNÁNDEZ, MAURER Paco, MARTINE Milena, et al. Bubble formation at a gas-evolving microelectrode[J]. Langmuir, 2014, 30(43): 13065-13074. |
| 28 | BRANDON N P, KELSALL G H. Growth kinetics of bubbles electrogenerated at microelectrodes[J]. Journal of Applied Electrochemistry, 1985, 15(4): 475-484. |
| 29 | MATSUSHIMA Hisayoshi, KIUCHI Daisuke, FUKUNAKA Yasuhiro, et al. Single bubble growth during water electrolysis under microgravity[J]. Electrochemistry Communications, 2009, 11(8): 1721-1723. |
| 30 | SCRIVEN L E. On the dynamics of phase growth[J]. Chemical Engineering Science, 1959, 10(1/2): 1-13. |
| 31 | ZUBKOV Tykhon, STAHL Dirk, THOMPSON Tracy L, et al. Ultraviolet light-induced hydrophilicity effect on TiO2(110)(1 × 1). dominant role of the photooxidation of adsorbed hydrocarbons causing wetting by water droplets[J]. The Journal of Physical Chemistry B, 2005, 109(32): 15454-15462. |
| 32 | CAPUTO Gianvito, NOBILE Concetta, KIPP Tobias, et al. Reversible wettability changes in colloidal TiO2 nanorod thin-film coatings under selective UV laser irradiation[J]. The Journal of Physical Chemistry C, 2008, 112(3): 701-714. |
| 33 | GAO Yanfeng, MASUDA Yoshitake, KOUMOTO Kunihito. Light-excited superhydrophilicity of amorphous TiO2 thin films deposited in an aqueous peroxotitanate solution[J]. Langmuir, 2004, 20(8): 3188-3194. |
| 34 | CHEN Juanwen, GUO Liejin. Nanoscale capillarity for mitigating gas bubble adhesion on arrayed photoelectrode during photoelectrochemical water splitting[J]. Applied Physics Letters, 2019, 114(23): 231604. |
| 35 | VOGT H. The role of single-phase free convection in mass transfer at gas evolving electrodes—Ⅱ. Experimental verification[J]. Electrochimica Acta, 1993, 38(10): 1427-1431. |
| 36 | VOGT H. On the various types of uncontrolled potential increase in electrochemical reactors—The anode effect[J]. Electrochimica Acta, 2013, 87: 611-618. |
| 37 | LOCHIEL A C, CALDERBANK P H. Mass transfer in the continuous phase around axisymmetric bodies of revolution[J]. Chemical Engineering Science, 1964, 19(7): 471-484. |
| 38 | LIU Hongbo, PAN Liangming, WEN Jian. Numerical simulation of hydrogen bubble growth at an electrode surface[J]. The Canadian Journal of Chemical Engineering, 2016, 94(1): 192-199. |
| 39 | LAX M. Temperature rise induced by a laser beam[J]. Journal of Applied Physics, 1977, 48(9): 3919-3924. |
| 40 | VOGT H. Interfacial supersaturation at gas evolving electrodes[J]. Journal of Applied Electrochemistry, 1993, 23(12): 1323-1325. |
| 41 | VOGT H. The concentration overpotential of gas evolving electrodes as a multiple problem of mass transfer[J]. Journal of the Electrochemical Society, 1990, 137(4): 1179-1184. |
| [1] | HAN Yuandi, ZOU Yun, LIANG Zhichao, TONG Zhangfa, CHEN Xiaopeng, LIAO Dankui. Preparation of high-temperature potassium bicarbonate foaming agent and its application in polypropylene microfoaming materials [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1599-1606. |
| [2] | LUO Xiaoping, JIA Mengfan, LI Shizhen. Pressure drop characteristics of countercurrent microfluidic channels under synergistic effect of electric field and modified PVDF membrane phase separation structure [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 646-659. |
| [3] | LI Haoyang, LI Hongwei, TAN Jianyu. Dynamic characteristics of boiling bubbles under transient oscillating heating conditions [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 735-742. |
| [4] | BAI Yiran, ZHAI Yuling, DAI Jinghui, LI Zhouhang. Mechanisms of bubble nucleation and heat transfer enhancement in micro/nano-scale pooling boiling [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 743-751. |
| [5] | WU Fengming, LI Shuaiqi, DAI Chunjiang, HE Shihui, CHEN Xiang, SONG Wenji, FENG Ziping. Exploration of the performance of a steam generation system based on a high-temperature heat pump with R245fa [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 752-763. |
| [6] | ZHANG Yu, WANG Yanling, ZHANG Chuanbao, XU Ning, LI Di, LIANG Shinan, SHI Wenjing, DING Wenhui. Research progress of temperature and salt resistant oil displacement systems in deep and ultra-deep reservoirs [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 1-16. |
| [7] | SU Yao, CHEN Zhanxiu, YANG Li, XING Hewei, HU Hecang, LI Yuanhua. Effect of heat source temperature on flow heat transfer in asymmetric nanochannels [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 144-153. |
| [8] | XIONG Jianhua, DUAN Zhigang, CHEN Jianfeng, YU Le, KANG Yuyang, SUN Shaofeng, QIN Yuanzhi, HUANG Qiyu. Determination of the lower limit of unheated oil gathering temperature for waxy crude oils in the low water content stage [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 255-267. |
| [9] | XU Zhongzheng, ZHAO Mingwei, LIU Jiawei, DAI Caili. Advances and prospects of high temperature-resistant fracturing fluid in ultra-deep reservoir [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4845-4858. |
| [10] | LI Yi, LIANG Lisi, ZHANG Lixing, QIAO Jiangyu, CUI Zhongyi, CHEN Jin, XU Qiang, ZHAO Chen. Simultaneous desulfurization and denitrification with hypochlorite oxidant [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5282-5289. |
| [11] | ZHENG Qingyu, JIN Guangyuan, FENG Wenkai, ZHU Zhengshan, ZHOU Yifan, TENG Houchang, LI Zhenfeng, SONG Chunfang, SONG Feihu, LI Jing. Numerical analysis of mixed characteristics of chaotic C-type geometric flows coupling electromagnetic thermal characteristics [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4262-4272. |
| [12] | GAO Xinyue, FAN Gaofeng, LIU Aiping, WANG Chang'an, HOU Yujie, ZHANG Jinming, XU Jie, CHE Defu. Research progress on waste heat recovery technology for flue gas and slurry after wet desulphurization [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4307-4319. |
| [13] | PAN Hanting, XU Hongtao, XU Duo, LUO Zhuqing. Analysis of thermal insulation characteristics of lithium-ion batteries based on phase change materials under low temperature [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4333-4341. |
| [14] | SONG Zhanlong, TANG Tao, PAN Wei, ZHAO Xiqiang, SUN Jing, MAO Yanpeng, WANG Wenlong. Micro-nano bubbles enhance ozone oxidation and degradation of wastewater containing phenol [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4614-4623. |
| [15] | JIANG Liangyan, WANG Qinghong, LI Jin, LIANG Jiahao, SHANG Pengyin, SONG Yanke, LI Zhuoyu, CHEN Chunmao. Comparison of hydrolysis and acidification performance and microbial characteristics of refinery wastewater at mesophilic and psychrophilic temperatures [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4654-4663. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |