Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (10): 5932-5941.DOI: 10.16085/j.issn.1000-6613.2023-1655
• Resources and environmental engineering • Previous Articles
WU Shengyuan1(), YANG Fuxin1(), TAN Houzhang1, DU Junwen2, LI Sheng2
Received:
2023-09-19
Revised:
2024-03-27
Online:
2024-10-29
Published:
2024-10-15
Contact:
YANG Fuxin
吴盛源1(), 杨富鑫1(), 谭厚章1, 杜君文2, 李升2
通讯作者:
杨富鑫
作者简介:
吴盛源(1998—),男,硕士研究生,研究方向为燃煤烟气水分回收。E-mail:shengyuanwu@stu.xjtu.edu.cn。
基金资助:
CLC Number:
WU Shengyuan, YANG Fuxin, TAN Houzhang, DU Junwen, LI Sheng. Experimental and numerical simulation of water recovery and particulate matter simultaneous removal from coal-fired flue gas[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5932-5941.
吴盛源, 杨富鑫, 谭厚章, 杜君文, 李升. 燃煤烟气水分回收和颗粒物同时脱除的实验和数值模拟[J]. 化工进展, 2024, 43(10): 5932-5941.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1655
参数 | 数值 |
---|---|
尺寸 | 长1400mm、宽500mm、高120mm |
材质 | 聚四氟乙烯 |
换热管排列方式 | 叉排 |
换热管外径/mm | 8 |
换热管壁厚/mm | 0.7 |
横向节距/mm | 30 |
纵向节距/mm | 9.5 |
参数 | 数值 |
---|---|
尺寸 | 长1400mm、宽500mm、高120mm |
材质 | 聚四氟乙烯 |
换热管排列方式 | 叉排 |
换热管外径/mm | 8 |
换热管壁厚/mm | 0.7 |
横向节距/mm | 30 |
纵向节距/mm | 9.5 |
烟气温度/℃ | 实验收水率/% | 实验传热系数/W·m-2·K-1 |
---|---|---|
48.2 | 25.66 | 209.2 |
55.4 | 30.62 | 217.3 |
58.7 | 30.28 | 209.4 |
烟气温度/℃ | 实验收水率/% | 实验传热系数/W·m-2·K-1 |
---|---|---|
48.2 | 25.66 | 209.2 |
55.4 | 30.62 | 217.3 |
58.7 | 30.28 | 209.4 |
冷却水温度/℃ | 实验值和模拟值误差/% | |
---|---|---|
收水率 | 传热系数 | |
15.65 | 11.49 | 29.17 |
19.50 | 7.83 | 24.74 |
23.60 | 6.60 | 20.31 |
27.45 | 4.76 | 17.23 |
31.30 | 4.88 | 11.88 |
36.25 | 0.81 | 2.37 |
41.25 | 19.27 | 15.63 |
冷却水温度/℃ | 实验值和模拟值误差/% | |
---|---|---|
收水率 | 传热系数 | |
15.65 | 11.49 | 29.17 |
19.50 | 7.83 | 24.74 |
23.60 | 6.60 | 20.31 |
27.45 | 4.76 | 17.23 |
31.30 | 4.88 | 11.88 |
36.25 | 0.81 | 2.37 |
41.25 | 19.27 | 15.63 |
管壁温度/℃ | 模拟收水率/% | |
---|---|---|
节距9.5mm | 节距19mm | |
37 | 25.30 | 27.16 |
35 | 28.98 | 32.32 |
33 | 32.86 | 35.36 |
31 | 36.84 | 39.24 |
管壁温度/℃ | 模拟收水率/% | |
---|---|---|
节距9.5mm | 节距19mm | |
37 | 25.30 | 27.16 |
35 | 28.98 | 32.32 |
33 | 32.86 | 35.36 |
31 | 36.84 | 39.24 |
管壁热导率/W·m-1·K-1 | 收水率/% | 传热系数/W·m-2·K-1 |
---|---|---|
0.26 | 28.98 | 203.36 |
0.34 | 32.79 | 251.93 |
0.42 | 35.60 | 260.07 |
0.50 | 37.69 | 282.09 |
管壁热导率/W·m-1·K-1 | 收水率/% | 传热系数/W·m-2·K-1 |
---|---|---|
0.26 | 28.98 | 203.36 |
0.34 | 32.79 | 251.93 |
0.42 | 35.60 | 260.07 |
0.50 | 37.69 | 282.09 |
1 | 朱吉茂, 孙宝东, 张军, 等. “双碳”目标下我国煤炭资源开发布局研究[J]. 中国煤炭, 2023, 49(1): 44-50. |
ZHU Jimao, SUN Baodong, ZHANG Jun, et al. Research on China’s coal resources development layout under the goals of carbon peak and carbon neutrality[J]. China Coal, 2023, 49(1): 44-50. | |
2 | 梁金强, 刘丹竹, 徐庶亮, 等. “双碳”目标下能源安全定量评价方法[J]. 化工进展, 2022, 41(3): 1622-1633. |
LIANG Jinqiang, LIU Danzhu, XU Shuliang, et al. Quantitative evaluation method of energy security under dual carbon target[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1622-1633. | |
3 | 马双忱, 别璇, 孙尧, 等. 湿法脱硫烟气水回收技术研究进展[J]. 洁净煤技术, 2019, 25(1): 64-70. |
MA Shuangchen, BIE Xuan, SUN Yao, et al. Research progress on flue gas water recovery technology in wet FGD[J]. Clean Coal Technology, 2019, 25(1): 64-70. | |
4 | 徐南平, 赵静, 刘公平. “双碳”目标下膜技术发展的思考[J]. 化工进展, 2022, 41(3): 1091-1096. |
XU Nanping, ZHAO Jing, LIU Gongping. Thinking of membrane technology development towards “carbon emission peak” and “carbon neutrality” targets[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1091-1096. | |
5 | 田路泞, 韩哲楠, 董勇, 等. 燃煤电厂湿烟气余热及水分回收技术研究[J]. 洁净煤技术, 2017, 23(5): 105-110. |
TIAN Luning, HAN Zhenan, DONG Yong, et al. Review of water recovering technologies from flue gas in coal fired power plant[J]. Clean Coal Technology, 2017, 23(5): 105-110. | |
6 | 王翔, 张泽昊, 廖增安, 等. 喷淋降温传热传质模型及其特性规律研究[J]. 中国电机工程学报, 2020, 40(8): 2578-2587. |
WANG Xiang, ZHANG Zehao, LIAO Zengan, et al. Research on heat and mass transfer model and characteristics in the spray scrubber[J]. Proceedings of the CSEE, 2020, 40(8): 2578-2587. | |
7 | 谢庆亮.间接冷凝技术在1000MW燃煤机组湿烟气水回收的应用[J]. 节能与环保, 2021(3): 89-91. |
XIE Qingliang.The application of indirect condensation technology in water recovery from wet flue gas on a 1000MW coal-fired power unit[J]. Energy Conservation & Environmental Protection, 2021(3): 89-91. | |
8 | 笪耀东, 车得福, 庄正宁, 等. 高水分烟气对流冷凝换热模拟实验研究[J]. 工业锅炉, 2003(1): 12-15, 34. |
Yaodong DA, CHE Defu, ZHUANG Zhengning, et al. An experimental study on forced convection-condensation heat transfer of the flue gas with high moisture[J]. Industrial Boiler, 2003(1): 12-15, 34. | |
9 | 雷承勇, 王恩禄, 黄晓宇, 等. 燃煤电站烟气水分回收技术试验研究[J]. 锅炉技术, 2011, 42(1): 5-8, 22. |
LEI Chengyong, WANG Enlu, HUANG Xiaoyu, et al. Experiment study on recovery of water steam in the flue gas of brown coal-fired power plant[J]. Boiler Technology, 2011, 42(1): 5-8, 22. | |
10 | 杨建国, 许明路, 陈永辉, 等. 燃煤电厂烟气冷凝法水回收试验研究[J]. 动力工程学报, 2020, 40(4): 342-348. |
YANG Jianguo, XU Minglu, CHEN Yonghui, et al. Experimental study on water recovery from flue gas condensation in coal-fired power plants[J]. Journal of Chinese Society of Power Engineering, 2020, 40(4): 342-348. | |
11 | 熊英莹, 谭厚章, 许伟刚, 等. 火电厂烟气潜热和凝结水回收的试验研究[J]. 热力发电, 2015, 44(6): 77-81. |
XIONG Yingying, TAN Houzhang, XU Weigang, et al. Experimental study on latent heat and condensate recovery from flue gas in coal-fired power plants[J]. Thermal Power Generation, 2015, 44(6): 77-81. | |
12 | 谭厚章, 熊英莹, 王毅斌, 等. 湿式相变凝聚器协同多污染物脱除研究[J]. 中国电力, 2017, 50(2): 128-134. |
TAN Houzhang, XIONG Yingying, WANG Yibin, et al. Study on synergistic removal of multi-pollutants by WPTA[J]. Electric Power, 2017, 50(2): 128-134. | |
13 | 徐钢, 陈袁, 牛晨巍, 等. 氟塑料换热器传热特性实验研究与模型优化[J]. 中国电机工程学报, 2017, 37(8): 2297-2304. |
XU Gang, CHEN Yuan, NIU Chenwei, et al. Optimization of heat transfer model and performance analysis of fluorine plastic heat exchangers[J]. Proceedings of the CSEE, 2017, 37(8): 2297-2304. | |
14 | 李剑锋, 涂淑平, 孙文哲. 氟塑料换热器的研究及应用进展[J]. 应用化工, 2019, 48(3): 685-687, 693. |
LI Jianfeng, TU Shuping, SUN Wenzhe. Research and application progress of fluoroplastic heat exchanger[J]. Applied Chemical Industry, 2019, 48(3): 685-687, 693. | |
15 | SHAMSI Syed, NEGASH Assmelash, CHO Gyu, et al. Waste heat and water recovery system optimization for flue gas in thermal power plants[J]. Sustainability, 2019, 11(7): 1881. |
16 | CEVALLOS Juan Gabriel, BERGLES Arthur E, Avram BAR-COHEN, et al. Polymer heat exchangers—History, opportunities, and challenges[J]. Heat Transfer Engineering, 2012, 33(13): 1075-1093. |
17 | HE Youliang, WALSH Dan, SHI Chao. Fluoropolymer composite coating for condensing heat exchangers: Characterization of the mechanical, tribological and thermal properties[J]. Applied Thermal Engineering, 2015, 91: 387-398. |
18 | CIERPISZ Mitchell, MCPHEDRAN Joselyne, HE Youliang, et al. Characterization of graphene-filled fluoropolymer coatings for condensing heat exchangers[J]. Journal of Composite Materials, 2021, 55(29): 4305-4320. |
19 | 满孝增. 氟塑料换热管束传热与流动计算及数值模拟[D]. 北京: 华北电力大学, 2017. |
MAN Xiaozeng. Calculation and numerical simulation of heat transfer and flow for fluorine plastic heat transfer tube bundle[D]. Beijing: North China Electric Power University, 2017. | |
20 | 赵国春. 聚偏氟乙烯换热器换热性能实验研究与数值模拟[D]. 北京: 北京建筑大学, 2015. |
ZHAO Guochun. Experimental Study and numerical simulation of heat transfer performance of PVDF heat exchanger[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2015. | |
21 | 李健, 张莉. 湿烟气冷凝换热的数值模拟[J]. 动力工程学报, 2021, 41(2): 129-135, 172. |
LI Jian, ZHANG Li. Numerical simulation on condensation heat transfer process of wet flue gas[J]. Journal of Chinese Society of Power Engineering, 2021, 41(2): 129-135, 172. | |
22 | 陈增桥. 竖管外含不凝气体蒸汽凝结换热特性及强化换热实验研究[D]. 济南: 山东大学, 2019. |
CHEN Zengqiao. Experimental study on condensation heat transfer characteristics and enhanced heat transfer of steam with non-condensable gas outside vertical tubes[D]. Jinan: Shandong University, 2019. | |
23 | TAN Houzhang, WANG Yibin, CAO Ruijie, et al. Development of wet phase transition agglomerator for multi-pollutant synergistic removal[J]. Applied Thermal Engineering, 2018, 130: 1208-1214. |
24 | 谭厚章, 熊英莹, 王毅斌, 等. 湿式相变凝聚技术协同湿式电除尘器脱除微细颗粒物研究[J]. 工程热物理学报, 2016, 37(12): 2710-2714. |
TAN Houzhang, XIONG Yingying, WANG Yibin, et al. Investigation on fine particulate matters removal by using wet phase transition agglomeration technology cooperated with wet electro static precipitator[J]. Journal of Engineering Thermophysics, 2016, 37(12): 2710-2714. | |
25 | 陈哲. 一种组合式除雾器的实验与数值模拟研究[D]. 北京: 华北电力大学, 2021. |
CHEN Zhe. Experimental and numerical simulation study on a combined mist eliminator[D]. Beijing: North China Electric Power University, 2021. | |
26 | 梁佳鹏, 左海滨, 张万龙, 等. 石墨烯-PFA复合材料换热器与金属换热器的传热性能对比[J]. 热科学与技术, 2022, 21(1): 51-56. |
LIANG Jiapeng, ZUO Haibin, ZHANG Wanlong, et al. Comparison of heat transfer performance between graphene-PFA composite material heat exchanger and metal heat exchanger[J]. Journal of Thermal Science and Technology, 2022, 21(1): 51-56. | |
27 | 王剑飞, 宋冠强, 赵贯甲. 烟气冷凝器换热特性实验研究[J]. 锅炉技术, 2023, 54(1): 9-14. |
WANG Jianfei, SONG Guanqiang, ZHAO Guanjia. Experimental study on heat transfer characteristics of flue gas condenser[J]. Boiler Technology, 2023, 54(1): 9-14. | |
28 | 许明路. 燃煤电厂烟气冷凝法水回收及颗粒物控制试验研究[D]. 杭州: 浙江大学, 2020. |
XU Minglu. Experimental study on water recovery and particle matter control of flue gas condensation in coal-fired power plants[D]. Hangzhou: Zhejiang University, 2020. | |
29 | 徐煦. 锅炉机组烟气对流冷凝换热特性研究[D]. 上海: 上海交通大学, 2016. |
XU Xu. Study on heat transfer characteristcs of flue gas of boilter units[D]. Shanghai: Shanghai Jiao Tong University, 2016. | |
30 | 彭越宇. 燃煤锅炉烟气中水分回收利用研究[D]. 杭州: 浙江大学, 2018. |
PENG Yueyu. Research on recovery and utilization of water from coal-fired boiler flue gas[D]. Hangzhou: Zhejiang University, 2018. | |
31 | 于琦. 含湿烟气冷凝换热特性研究[D]. 吉林: 东北电力大学, 2021. |
YU Qi. Study on condensation heat transfer characteristics of wet flue gas[D]. Jilin: Northeast Electric Power University, 2021. | |
32 | 张经伟, 刘永阳, 刘东, 等. 竖直壁面上含SO2气体的锅炉烟气的低温冷凝特性[J]. 化工学报, 2021, 72(S1): 475-481. |
ZHANG Jingwei, LIU Yongyang, LIU Dong, et al. Condensation performance of low temperature boiler flue gas containing SO2 on vertical wall[J] CIESC Journal, 2021, 72(S1): 475-481. | |
33 | ZSCHAECK G, FRANK T, BURNS A D. CFD modelling and validation of wall condensation in the presence of non-condensable gases[J]. Nuclear Engineering and Design, 2014, 279:137-146. |
34 | LEVY Edward, BILIRGEN Harun, JEONG Kwangkook, et al. Recovery of water from boiler flue gas[R]. Bethlehem, Energy Research Center (Lehigh University), 2008. |
35 | 章平衡, 李凯, 龚俊, 等. 椭圆管氟塑钢空气预热器烟气侧流动与换热特性数值研究[J]. 热力发电, 2021, 50(10): 116-123. |
ZHANG Pingheng, LI Kai, GONG Jun, et al. Numerical study on flow and heat transfer characteristics of flue gas side for a fluoroplastic steel air preheater with elliptical tubes[J]. Thermal Power Generation, 2021, 50(10): 116-123. | |
36 | TROJANOWSKI R, BUTCHER T, WOREK M, et al. Polymer heat exchanger design for condensing boiler applications[J]. Applied Thermal Engineering, 2016, 103: 150-158. |
37 | 王建朋, 段璐, 王乃继, 等. 燃煤锅炉烟气脱硫技术对颗粒物排放影响研究进展[J]. 洁净煤技术, 2020, 26(2): 34-42. |
WANG Jianpeng, DUAN Lu, WANG Naiji, et al. Research progress on the effect of flue gas desulfurization technology of coal-fired boiler on particulate matter emission[J]. Clean Coal Technology, 2020, 26(2): 34-42. | |
38 | 曾子轮, 王超, 李鸿源, 等. 超临界受热面水侧颗粒沉积的数值模拟研究[J]. 动力工程学报, 2022, 42(9): 806-811. |
ZENG Zilun, WANG Chao, LI Hongyuan, et al. Numerical simulation of particle deposition on supercritical heating surface[J]. Journal of Chinese Society of Power Engineering, 2022, 42(9): 806-811. | |
39 | 李曌. 不同压差下颗粒物穿透性能研究[D]. 太原: 太原理工大学, 2021. |
LI Zhao. Study on the penetration properties of particulate matter under different pressure differences[D]. Taiyuan: Taiyuan University of Technology, 2021. | |
40 | 林雅军. 湍流增湿条件下超细颗粒团聚行为研究[D]. 青岛: 中国石油大学(华东), 2020. |
LIN Yajun. Study on ultra-fine particle aggregation behavior under turbulent and humidied conditions[D]. Qingdao: China University of Petroleum (Huadong), 2020. | |
41 | 刘林虎, 杨永斌, 冯孝峰, 等. 燃煤机组烟气冷凝对可凝结颗粒脱除特性的影响[J]. 洁净煤技术, 2023, 29(S2): 510-513. |
LIU Linhu, YANG Yongbin, FENG Xiaofeng, et al. Effect of flue gas condensation on the synergistic removal of condensable particulate matter in coal-fired units[J]. Clean Coal Technology, 2023, 29(S2): 510-513. |
[1] | MA Yongli, LI Muyang, MA Zihao, WANG Haoran, WANG Maolong, FEI Yaohan, ZHANG Lubin, LIU Mingyan. Experiment of simulation study on gas-solid fluidization on Martian environments [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4203-4209. |
[2] | JIANG Jingzhi, SHAO Guowei, CUI Haiting, LI Hongtao, YANG Qi. Analysis of enhanced heat transfer characteristics of finned triplex-tube phase change heat storage unit [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4210-4221. |
[3] | PAN Hanting, XU Hongtao, XU Duo, LUO Zhuqing. Analysis of thermal insulation characteristics of lithium-ion batteries based on phase change materials under low temperature [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4333-4341. |
[4] | MA Jiahui, WANG Yibin, FENG Jingwu, TAN Houzhang, LIN Chi. Experimental of CO2 mineralization by industrial containing calcium solid wastes [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3440-3449. |
[5] | WANG Qingtai, ZHANG Sai, WANG Jiemin. Numerical simulation for non-uniform compression of porous electrodes in vanadium flow batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2940-2949. |
[6] | SUN Xian, LIU Jun, WANG Xiaohui, SUN Changyu, CHEN Guangjin. Review of experimental and numerical simulation research on the development of natural gas hydrate reservoir with underlying gas [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2091-2103. |
[7] | DU Yongliang, LIANG Zhuobin, GONG Yaoxu, BI Haojie, XU Zhiyuan, YUAN Hongying. Air gap membrane distillation research status and applications [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1655-1666. |
[8] | SUN Chao, AI Shiqin, LIU Yuechan. Numerical simulation plate side flow heat transfer new plate-shell heat exchanger with considering physical property changes and shell heat transfer [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1676-1689. |
[9] | ZHU Yanni, WANG Wei, SUN Yanchenhao, WEI Gang, ZHANG Dawei. Numerical simulation of centrifugal spray drying based on single-droplet evaporation [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1700-1710. |
[10] | ZHAO Jilong, GUO Yuxiang, CHEN Hongxia, YUAN Dazhong, DU Xiaoze. Experimental and numerical simulation on heat transfer characteristics of vertical cesium heat pipes [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1711-1719. |
[11] | YU Yanfang, DING Pengcheng, MENG Huibo, SHI Bowen, YAO Yunjuan. Heat transfer enhancement of non-Newtonian fluid in the blade-type static mixer [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1145-1156. |
[12] | YIN Shaowu, LI Xianxian, HAN Jiawei, LU Ming, TONG Lige, WANG Li. Heat charge and release characteristics of household off-peak electricity thermal storage heating system [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1206-1213. |
[13] | LI Jing, FANG Qing, ZHOU Wenhao, WU Guoliang, WANG Jiahui, ZHANG Hua, NI Hongwei. Effect of baffle configuration on the multiphase flow behaviors of vanadium shale leaching tank [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 619-627. |
[14] | JIAN Yu, CHEN Baoming, GONG Hanyu. Enhanced heat transfer characteristics of phase change heat storage systems based on hierarchically structured skeletons [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 649-658. |
[15] | BIAN Hanqing, ZHANG Xingkai, LIAO Ruiquan, WANG Dong, LI Rui, LUO Xiaochu, HOU Yaodong, BAI Xiaohong, GAN Qingming. Double-parameter measurement method of wet gas in phase-isolation state [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 722-733. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |