1 |
CAROLINA COLL, GIBBINS JON, SIGURD HEIBERG, et al. Carbon carpture, use and storage (CCUS)[R]. New York: United Nations Economic Commission for Europe (UNECE), 2021.
|
2 |
Mara OLIVARES-MARÍN, Mercedes MAROTO-VALER M. Development of adsorbents for CO2 capture from waste materials: A review[J]. Greenhouse Gases: Science and Technology, 2012, 2(1): 20-35.
|
3 |
WANG Junya, HUANG Liang, YANG Ruoyan, et al. Recent advances in solid sorbents for CO2 capture and new development trends[J]. Energy & Environmental Science, 2014, 7(11): 3478-3518.
|
4 |
WANG Qiang, LUO Jizhong, ZHONG Ziyi, et al. CO2 capture by solid adsorbents and their applications: Current status and new trends[J]. Energy & Environmental Science, 2011, 4(1): 42-55.
|
5 |
YUAN Xiangzhou, LEE Jong Gyu, YUN Heesun, et al. Solving two environmental issues simultaneously: Waste polyethylene terephthalate plastic bottle-derived microporous carbons for capturing CO2 [J]. Chemical Engineering Journal, 2020, 397: 125350.
|
6 |
KAZA Silpa, YAO Lisa, Perinaz BHADA-TATA, et al. What a waste 2.0: A global snapshot of solid waste management to 2050[M]. Washington, DC: World Bank, 2018.
|
7 |
YOU Siming, SONNE Christian, Yong Sik OK. COVID-19’s unsustainable waste management[J]. Science, 2020, 368(6498): 1438.
|
8 |
SINGH Gurwinder, LAKHI Kripal S, Sanchita SIL, et al. Biomass derived porous carbon for CO2 capture[J]. Carbon, 2019, 148: 164-186.
|
9 |
LI Shuangjun, YUAN Xiangzhou, DENG Shuai, et al. A review on biomass-derived CO2 adsorption capture: Adsorbent, adsorber, adsorption, and advice[J]. Renewable and Sustainable Energy Reviews, 2021, 152: 111708.
|
10 |
YUAN Xiangzhou, WANG Junyao, DENG Shuai, et al. Recent advancements in sustainable upcycling of solid waste into porous carbons for carbon dioxide capture[J]. Renewable and Sustainable Energy Reviews, 2022, 162: 112413.
|
11 |
YUAN Xiangzhou, DISSANAYAKE Pavani Dulanja, GAO Bin, et al. Review on upgrading organic waste to value-added carbon materials for energy and environmental applications[J]. Journal of Environmental Management, 2021, 296: 113128.
|
12 |
DANISH Mohammed, AHMAD Tanweer. A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application[J]. Renewable and Sustainable Energy Reviews, 2018, 87: 1-21.
|
13 |
Jin Sun CHA, PARK Sung Hoon, JUNG Sang-Chul, et al. Production and utilization of biochar: A review[J]. Journal of Industrial and Engineering Chemistry, 2016, 40: 1-15.
|
14 |
WEI Lu, SEVILLA Marta, FUERTES Antonio B, et al. Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes[J]. Advanced Energy Materials, 2011, 1(3): 356-361.
|
15 |
GONZÁLEZ-GARCÍA P. Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 1393-1414.
|
16 |
YUAN Xiangzhou, LI Shuangjun, JEON Sunbin, et al. Valorization of waste polyethylene terephthalate plastic into N-doped microporous carbon for CO2 capture through a one-pot synthesis[J]. Journal of Hazardous Materials, 2020, 399: 123010.
|
17 |
THINES K R, ABDULLAH E C, MUBARAK N M, et al. Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application: A review[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 257-276.
|
18 |
YUAN Xiangzhou, SUVARNA Manu, Sean LOW, et al. Applied machine learning for prediction of CO2 adsorption on biomass waste-derived porous carbons[J]. Environmental Science & Technology, 2021, 55(17): 11925-11936.
|
19 |
NAZIR Ghazanfar, REHMAN Adeela, PARK Soo-Jin. Role of heteroatoms (nitrogen and sulfur)-dual doped corn-starch based porous carbons for selective CO2 adsorption and separation[J]. Journal of CO2 Utilization, 2021, 51: 101641.
|
20 |
REHMAN Adeela, NAZIR Ghazanfar, RHEE Kyong YOP, et al. A rational design of cellulose-based heteroatom-doped porous carbons: Promising contenders for CO2 adsorption and separation[J]. Chemical Engineering Journal, 2021, 420: 130421.
|
21 |
LAHIJANI Pooya, MOHAMMADI Maedeh, MOHAMED Abdul Rahman. Metal incorporated biochar as a potential adsorbent for high capacity CO2 capture at ambient condition[J]. Journal of CO2 Utilization, 2018, 26: 281-293.
|
22 |
Pennline H W. Sorbent research for the capture of carbon dioxide[R]. Pittsburgh: National Energy Technology Laboratory (NETL), 2016.
|
23 |
YUAN Xiangzhou, KUMAR Nallapaneni Manoj, Boris BRIGLJEVIĆ, et al. Sustainability-inspired upcycling of waste polyethylene terephthalate plastic into porous carbon for CO2 capture[J]. Green Chemistry, 2022, 24(4): 1494-1504.
|
24 |
RAGANATI Federica, CHIRONE Riccardo, AMMENDOLA Paola. CO2 capture by temperature swing adsorption: Working capacity As affected by temperature and CO2 partial pressure[J]. Industrial & Engineering Chemistry Research, 2020, 59(8): 3593-3605.
|
25 |
MALLESH D, ANBARASAN J, Mahesh KUMAR P, et al. Synthesis, characterization of carbon adsorbents derived from waste biomass and its application to CO2 capture[J]. Applied Surface Science, 2020, 530: 147226.
|
26 |
PLAZA M G, GONZÁLEZ A S, PEVIDA C, et al. Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications[J]. Applied Energy, 2012, 99: 272-279.
|
27 |
朱梦媛. 菠萝废弃物基活性炭的制备及其低温CO2吸附性能[D]. 武汉: 武汉理工大学, 2019.
|
|
ZHU Mengyuan. Preparation of pineapple waste-based activated carbon and its low-temperature CO2 adsorption performance[D]. Wuhan: Wuhan University of Technology, 2019.
|
28 |
YUE Limin, RAO Linli, WANG Liwei, et al. Efficient CO2 capture by nitrogen-doped biocarbons derived from rotten strawberries[J]. Industrial & Engineering Chemistry Research, 2017, 56(47): 14115-14122.
|
29 |
COROMINA Helena Matabosch, WALSH Darren A, MOKAYA Robert. Biomass-derived activated carbon with simultaneously enhanced CO2 uptake for both pre and post combustion capture applications[J]. Journal of Materials Chemistry A, 2016, 4(1): 280-289.
|
30 |
俞泽涛, 曾光华, 周雅彬, 等. 中药固废制备多孔碳及其CO2吸附性能[J]. 洁净煤技术, 2022, 28(10): 203-211.
|
|
YU Zetao, ZENG Guanghua, ZHOU Yabin, et al. Preparation of porous carbon from solid waste of traditional Chinese medicine and its CO2 adsorption performance[J]. Clean Coal Technology, 2022, 28(10): 203-211.
|
31 |
YANG Fangqi, WANG Jun, LIU Lu, et al. Synthesis of porous carbons with high N-content from shrimp shells for efficient CO2-capture and gas separation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15550-15559.
|
32 |
刘沈芳. 生物质基氮掺杂多孔炭用于CO2吸附和超级电容器电极的研究[D]. 金华: 浙江师范大学, 2021.
|
|
LIU Shenfang. Study on biomass-based nitrogen-doped porous carbon for CO2 adsorption and supercapacitor electrode[D]. Jinhua: Zhejiang Normal University, 2021.
|
33 |
刘清涛. PEI改性生物炭的制备及对CO2吸附性能的评价[J]. 环境科学学报, 2021, 41(3): 932-939.
|
|
LIU Qingtao. Preparation of PEI-modified biochar and evaluation of its CO2 adsorption performance[J]. Acta Scientiae Circumstantiae, 2021, 41(3): 932-939.
|
34 |
邓淋, 俞倩倩. 莲杆基生物炭吸附CO2的性能研究[J]. 化工技术与开发, 2021, 50(4): 42-45.
|
|
DENG Lin, YU Qianqian. Study on CO2 adsorption performance of sugarcane-based activated carbon[J]. Technology & Development of Chemical Industry, 2021, 50(4): 42-45.
|
35 |
张莉. 甘蔗渣活性炭的制备及其CO2吸附性能研究[D]. 武汉: 武汉科技大学, 2019.
|
|
ZHANG Li. Study on preparation of bagasse activated carbon and its CO2 adsorption performance[D].Wuhan: Wuhan University of Science and Technology, 2019.
|
36 |
LI Dawei, MA Tengfei, ZHANG Ruliang, et al. Preparation of porous carbons with high low-pressure CO2 uptake by KOH activation of rice husk char[J]. Fuel, 2015, 139: 68-70.
|
37 |
LIU Xin, SUN Chenggong, LIU Hao, et al. Developing hierarchically ultra-micro/mesoporous biocarbons for highly selective carbon dioxide adsorption[J]. Chemical Engineering Journal, 2019, 361: 199-208.
|
38 |
丁帅. 改性海藻焦吸附脱除烟气中二氧化碳的研究[D]. 镇江: 江苏大学, 2020.
|
|
DING Shuai. Study on adsorption and removal of carbon dioxide from flue gas by modified seaweed coke[D].Zhenjiang: Jiangsu University, 2020.
|
39 |
石硕. 藻基多孔生物炭的制备及其吸附烟气中CO2的研究[D]. 镇江: 江苏大学, 2021.
|
|
SHI Shuo. Study on preparation of algae-based porous biochar and its adsorption of CO2 in flue gas[D]. Zhenjiang: Jiangsu University, 2021.
|
40 |
YANG Jie, YUE Limin, HU Xin, et al. Efficient CO2 capture by porous carbons derived from coconut shell[J]. Energy & Fuels, 2017, 31(4): 4287-4293.
|
41 |
ELLO Aimé Serge, DE SOUZA Luiz K C, TROKOUREY Albert, et al. Coconut shell-based microporous carbons for CO2 capture[J]. Microporous and Mesoporous Materials, 2013, 180: 280-283.
|
42 |
YUE Limin, XIA Qiongzhang, WANG Liwei, et al. CO2 adsorption at nitrogen-doped carbons prepared by K2CO3 activation of urea-modified coconut shell[J]. Journal of Colloid and Interface Science, 2018, 511: 259-267.
|
43 |
CHEN Jie, YANG Jie, HU Gengshen, et al. Enhanced CO2 capture capacity of nitrogen-doped biomass-derived porous carbons[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1439-1445.
|
44 |
YANG Mingli, GUO Liping, HU Gengshen, et al. Highly cost-effective nitrogen-doped porous coconut shell-based CO2 sorbent synthesized by combining ammoxidation with KOH activation[J]. Environmental Science & Technology, 2015, 49(11): 7063-7070.
|
45 |
KAUR Balpreet, SINGH Jasminder, GUPTA Raj Kumar, et al. Porous carbons derived from polyethylene terephthalate (PET) waste for CO2 capture studies[J]. Journal of Environmental Management, 2019, 242: 68-80.
|
46 |
ZHAO Yunfeng, LIU Xin, HAN Yu. Microporous carbonaceous adsorbents for CO2 separation via selective adsorption[J]. RSC Advances, 2015, 5(38): 30310-30330.
|
47 |
LI Jiaxin, MICHALKIEWICZ Beata, MIN Jiakang, et al. Selective preparation of biomass-derived porous carbon with controllable pore sizes toward highly efficient CO2 capture[J]. Chemical Engineering Journal, 2019, 360: 250-259.
|
48 |
ZHAO Jie, DENG S, ZHAO Li, et al. Synergistic and competitive effect of H2O on CO2 adsorption capture: Mechanism explanations based on molecular dynamic simulation[J]. Journal of CO2 Utilization, 2021, 52: 101662.
|
49 |
HORSTMEIER J F, GOMEZ LOPEZ A, AGAR D W. Performance improvement of vacuum swing adsorption processes for CO2 removal with integrated phase change material[J]. International Journal of Greenhouse Gas Control, 2016, 47: 364-375.
|
50 |
BAHAMON Daniel, OGUNGBENRO Adetola E, KHALEEL Maryam, et al. Performance of activated carbons derived from date seeds in CO2 swing adsorption determined by combining experimental and molecular simulation data[J]. Industrial & Engineering Chemistry Research, 2020, 59(15): 7161-7173.
|
51 |
QUEREJETA N, GARCÍA S, ÁLVAREZ-GUTIÉRREZ N, et al. Measuring heat capacity of activated carbons for CO2 capture[J]. Journal of CO2 Utilization, 2019, 33: 148-156.
|
52 |
UDDIN Kutub, ISLAM Md Amirul, MITRA Sourav, et al. Specific heat capacities of carbon-based adsorbents for adsorption heat pump application[J]. Applied Thermal Engineering, 2018, 129: 117-126.
|
53 |
GUO Bo, CHANG Liping, XIE Kechang. Adsorption of carbon dioxide on activated carbon[J]. Journal of Natural Gas Chemistry, 2006, 15(3): 223-229.
|
54 |
姚晨牧, 冯丽, 安亚雄, 等. 碳材料的分子模型及模拟方法在吸附中应用的研究进展[J]. 天然气化工(C1化学与化工), 2021, 46(S1): 1-9.
|
|
YAO Chenmu, FENG Li, AN Yaxiong, et al. Research progress of molecular model and simulation method of carbon materials in adsorption application[J]. Natural Gas Chemical Industry, 2021, 46(S1): 1-9.
|
55 |
TENNEY C M, LASTOSKIE C M. Molecular simulation of carbon dioxide adsorption in chemically and structurally heterogeneous porous carbons[J]. Environmental Progress, 2006, 25(4): 343-354.
|
56 |
MADDOX M, ULBERG D, GUBBINS K E. Molecular simulation of simple fluids and water in porous carbons[J]. Fluid Phase Equilibria, 1995, 104: 145-158.
|
57 |
BILLEMONT Pierre, COASNE Benoit, DE WEIRELD Guy. Adsorption of carbon dioxide, methane, and their mixtures in porous carbons: Effect of surface chemistry, water content, and pore disorder[J]. Langmuir, 2013, 29(10): 3328-3338.
|
58 |
LIU Lang, NICHOLSON David, BHATIA Suresh K. Adsorption of CH4 and CH4/CO2 mixtures in carbon nanotubes and disordered carbons: A molecular simulation study[J]. Chemical Engineering Science, 2015, 121: 268-278.
|
59 |
ZHANG Junfang, LIU Keyu, CLENNELL M B, et al. Molecular simulation of CO2-CH4 competitive adsorption and induced coal swelling[J]. Fuel, 2015, 160: 309-317.
|
60 |
PALMER Jeremy C, MOORE Joshua D, ROUSSEL Thomas J, et al. Adsorptive behavior of CO2, CH4 and their mixtures in carbon nanospace: A molecular simulation study[J]. Physical Chemistry Chemical Physics, 2011, 13(9): 3985-3996.
|
61 |
MICHALEC Lukáš, Martin LÍSAL. Molecular simulation of shale gas adsorption onto overmature type Ⅱ model kerogen with control microporosity[J]. Molecular Physics, 2017, 115(9/10/11/12): 1086-1103.
|
62 |
WANG Sen, JAVADPOUR Farzam, FENG Qihong. Fast mass transport of oil and supercritical carbon dioxide through organic nanopores in shale[J]. Fuel, 2016, 181: 741-758.
|
63 |
SIZOVA Anastasia A, SIZOV Vladimir V, BRODSKAYA Elena N. Adsorption of CO2/CH4 and CO2/N2 mixtures in SBA-15 and CMK-5 in the presence of water: A computer simulation study[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 474: 76-84.
|
64 |
DANG Yong, ZHAO Lianming, LU Xiaoqing, et al. Molecular simulation of CO2/CH4 adsorption in brown coal: Effect of oxygen-, nitrogen-, and sulfur-containing functional groups[J]. Applied Surface Science, 2017, 423: 33-42.
|
65 |
LU Xiaoqing, JIN Dongliang, WEI Shuxian, et al. Competitive adsorption of a binary CO2-CH4 mixture in nanoporous carbons: Effects of edge-functionalization[J]. Nanoscale, 2015, 7(3): 1002-1012.
|
66 |
WANG Yanxia, HU Xiude, HAO Jian, et al. Nitrogen and oxygen codoped porous carbon with superior CO2 adsorption performance: A combined experimental and DFT calculation study[J]. Industrial & Engineering Chemistry Research, 2019, 58(29): 13390-13400.
|
67 |
WU Dawei, YANG Yingju, LIU Jing, et al. Plasma-modified N/O-doped porous carbon for CO2 capture: An experimental and theoretical study[J]. Energy & Fuels, 2020, 34(5): 6077-6084.
|
68 |
CHEN Hongyu, GUO Yang, DU Yankun, et al. The synergistic effects of surface functional groups and pore sizes on CO2 adsorption by GCMC and DFT simulations[J]. Chemical Engineering Journal, 2021, 415: 128824.
|
69 |
LIU Zilong, LI Xue, SHI Di, et al. Superior selective CO2 adsorption and separation over N2 and CH4 of porous carbon nitride nanosheets: Insights from GCMC and DFT simulations[J]. Langmuir, 2023, 39(18): 6613-6622.
|
70 |
WU Dawei, LIU Jing, YANG Yingju, et al. Nitrogen/oxygen co-doped porous carbon derived from biomass for low-pressure CO2 capture[J]. Industrial & Engineering Chemistry Research, 2020, 59(31): 14055-14063.
|
71 |
MA Xiancheng, LI Liqing, ZENG Zheng, et al. Experimental and theoretical demonstration of the relative effects of O-doping and N-doping in porous carbons for CO2 capture[J]. Applied Surface Science, 2019, 481: 1139-1147.
|
72 |
LI Xiaofang, YIN Yingying, CHANG Xiao, et al. Doping-induced enhancement of CO2 adsorption on negatively charged C3N nanosheet: Insights from DFT calculations[J]. Chemical Engineering Journal, 2020, 387: 123403.
|
73 |
DARVISHNEJAD Mohammad Hossein, Adel REISI-VANANI. Synergetic effects of metals in graphyne 2D carbon structure for high promotion of CO2 capturing[J]. Chemical Engineering Journal, 2021, 406: 126749.
|
74 |
MA Xiancheng, SU Changqing, LIU Baogen, et al. Heteroatom-doped porous carbons exhibit superior CO2 capture and CO2/N2 selectivity: Understanding the contribution of functional groups and pore structure[J]. Separation and Purification Technology, 2021, 259: 118065.
|
75 |
SATHISHKUMAR Nadaraj, WU Shiuan-Yau, CHEN Hsin-Tsung. Charge-modulated/electric-field controlled reversible CO2/H2 capture and storage on metal-free N-doped penta-graphene[J]. Chemical Engineering Journal, 2020, 391: 123577.
|
76 |
周逸寰, 解强, 周红阳, 等. 基于分子模拟的多孔炭材料结构模型构建方法研究进展[J]. 化工进展, 2024, 43(3): 1535-1551.
|
|
ZHOU Yihuan, XIE Qiang, ZHOU Hongyang, et al. Modeling of porous carbon materials based on molecular simulation: State-of-the art[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1535-1551.
|
77 |
LI Jiali, Kaizhuo LIM, YANG Haitao, et al. AI applications through the whole life cycle of material discovery[J]. Matter, 2020, 3(2): 393-432.
|
78 |
张子杭, 许丹, 胡艳军, 等. 机器学习在有机固废全链条处置中的应用进展[J]. 能源环境保护, 2023, 37(1): 184-193.
|
|
ZHANG Zihang, XU Dan, HU Yanjun, et al. Application progress of machine learning in whole chain disposal of organic solid waste[J]. Energy Environmental Protection, 2023, 37(1): 184-193.
|
79 |
WANG Song, ZHANG Zihao, DAI Sheng, et al. Insights into CO2/N2 selectivity in porous carbons from deep learning[J]. ACS Materials Letters, 2019, 1(5): 558-563.
|
80 |
WANG Song, LI Yi, DAI Sheng, et al. Prediction by convolutional neural networks of CO2/N2 selectivity in porous carbons from N2 adsorption isotherm at 77K[J]. Angewandte Chemie International Edition, 2020, 59(44): 19645-19648.
|
81 |
ZHOU Liang. Prediction of CO2 adsorption on different activated carbons by hybrid group method of data-handling networks and LSSVM[J]. Energy Sources A: Recovery, Utilization, and Environmental Effects, 2019, 41(16): 1960-1971.
|
82 |
ZHANG Zihao, SCHOTT Jennifer A, LIU Miaomiao, et al. Prediction of carbon dioxide adsorption via deep learning[J]. Angewandte Chemie International Edition, 2019, 58(1): 259-263.
|
83 |
BARKI Hadjer, KHAOUANE Latifa, HANINI Salah. Modelling of adsorption of methane, nitrogen, carbon dioxide, their binary mixtures, and their ternary mixture on activated carbons using artificial neural network[J]. Kemija u Industriji, 2019, 68(7/8): 289-302.
|
84 |
ZHU Xinzhe, TSANG Daniel C W, WANG Lei, et al. Machine learning exploration of the critical factors for CO2 adsorption capacity on porous carbon materials at different pressures[J]. Journal of Cleaner Production, 2020, 273: 122915.
|
85 |
GHALANDARI Vahab, HASHEMIPOUR Hassan, BAGHERI Hamidreza. Experimental and modeling investigation of adsorption equilibrium of CH4, CO2, and N2 on activated carbon and prediction of multi-component adsorption equilibrium[J]. Fluid Phase Equilibria, 2020, 508: 112433.
|
86 |
LI Jie, PAN Lanjia, SUVARNA Manu, et al. Fuel properties of hydrochar and pyrochar: Prediction and exploration with machine learning[J]. Applied Energy, 2020, 269: 115166.
|
87 |
HOSSEIN Mashhadimoslem, MILAD Vafaeinia, MOBIN Safarzadeh, et al. Development of predictive models for activated carbon synthesis from different biomass for CO2 adsorption using artificial neural networks[J]. Industrial & Engineering Chemistry Research, 2021, 60(38): 13950-13966.
|
88 |
Mashhadimoslem Hossein, Ghaemi Ahad. Machine learning analysis and prediction of N2, N2O, and O2 adsorption on activated carbon and carbon molecular sieve[J]. Environmental Science and Pollution Research, 2023, 30(2): 4166-4186.
|
89 |
Somayeh Kolbadinejad, Hossein Mashhadimoslem, Ahad Ghaemi, et al. Deep learning analysis of Ar, Xe, Kr, and O2 adsorption on Activated Carbon and Zeolites using ANN approach[J]. Chemical Engineering and Processing:Process Intensification, 2022, 170: 108662.
|
90 |
PALLE Kishor, VUNGUTURI Shanthi, GAYATRI Sambhani Naga, et al. The prediction of CO2 adsorption on rice husk activated carbons via deep learning neural network[J]. MRS Communications, 2022, 12(4): 434-440.
|
91 |
陈一飞, 张晓晴, 谭康豪, 等. 基于机器学习的多孔生物炭吸附CO2性能预测[J]. 土木与环境工程学报(中英文). DOI:10.11835/j.issn.2096-6717.2023.060 .
|
|
CHEN Yifei, ZHANG Xiaoqing, TAN Kanghao, et al. Prediction of CO2 adsorption performance in porous biochar based on machine learning[J]. Journal of Civil and Environmental Engineering. DOI:10.11835/j.issn.2096-6717.2023.060 .
|
92 |
MA Xiancheng, XU Wenjun, SU Rongkui, et al. Insights into CO2 capture in porous carbons from machine learning, experiments and molecular simulation[J]. Separation and Purification Technology, 2023, 306: 122521.
|
93 |
王璐, 张磊, 都健. 机器学习高效筛选用于CO2/N2选择性吸附分离的沸石材料[J]. 化工进展, 2023, 42(1): 148-158.
|
|
WANG Lu, ZHANG Lei, DU Jian. Efficient screening of zeolite materials for selective adsorption and separation of CO2/N2 by machine learning[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 148-158.
|
94 |
姜明星, 王斯坦, 许端平. 基于机器学习的金属有机框架吸附水中重金属性能预测[J]. 中国环境科学, 2023, 43(5): 2319-2327.
|
|
JIANG Mingxing, WANG Sitan, XU Duanping. Prediction of adsorption performance of MOFs for heavy metals in water based on machine learning[J]. China Environmental Science, 2023, 43(5): 2319-2327.
|
95 |
李炜, 梁添贵, 林元创, 等. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
|
|
LI Wei, LIANG Tiangui, LIN Yuanchuang, et al. Machine learning accelerated high-throughput computational screening of metal-organic frameworks[J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
|
96 |
杨潇. 用于化学战剂捕获的MOF吸附剂高通量分子模拟研究[D]. 广州: 广州大学, 2023.
|
|
YANG Xiao. Study on high throughput molecular simulation of MOF adsorbent for chemical warfare agent capture[D]. Guangzhou: Guangzhou University, 2023.
|
97 |
FANOURGAKIS George S, GKAGKAS Konstantinos, TYLIANAKIS Emmanuel, et al. A universal machine learning algorithm for large-scale screening of materials[J]. Journal of the American Chemical Society, 2020, 142(8): 3814-3822.
|
98 |
BORBOUDAKIS Giorgos, STERGIANNAKOS Taxiarchis, FRYSALI Maria, et al. Chemically intuited, large-scale screening of MOFs by machine learning techniques[J]. NPJ Computational Materials, 2017, 3: 40.
|
99 |
DU Zhenyu, DENG Shuai, ZHAO Li, et al. A high-throughput computational screening of potential adsorbents for a thermal compression CO2 Brayton cycle[J]. Sustainable Energy & Fuels, 2021, 5(5): 1415-1428.
|
100 |
LI Wei, XIA Xiaoxiao, LI Song. Screening of covalent-organic frameworks for adsorption heat pumps[J]. ACS Applied Materials & Interfaces, 2020, 12(2): 3265-3273.
|
101 |
翟一杰, 张天祚, 申晓旭, 等. 生命周期评价方法研究进展[J]. 资源科学, 2021, 43(3): 446-455.
|
|
ZHAI Yijie, ZHANG Tianzuo, SHEN Xiaoxu, et al. Development of life cycle assessment method[J]. Resources Science, 2021, 43(3): 446-455.
|
102 |
刘蔚, 毛开伟, 张廷军, 等. 生命周期评价体系的开发及其在生物质资源化领域的应用进展[J]. 环境工程, 2019, 37: 384-388.
|
|
LIU Wei, MAO Kaiwei, ZHANG Tingjun, et al. Development of life cycle assessment and application in biomass resource recovery[J]. Environmental Engineering, 2019, 37:384-388.
|
103 |
ARENA Noemi, LEE Jacquetta, CLIFT Roland. Life cycle assessment of activated carbon production from coconut shells[J]. Journal of Cleaner Production, 2016, 125: 68-77.
|
104 |
Darithsa LOYA-GONZÁLEZ, Margarita LOREDO-CANCINO, Eduardo SOTO-REGALADO, et al. Optimal activated carbon production from corn pericarp: A life cycle assessment approach[J]. Journal of Cleaner Production, 2019, 219: 316-325.
|
105 |
LEFEBVRE David, WILLIAMS Adrian, KIRK Guy J D, et al. An anticipatory life cycle assessment of the use of biochar from sugarcane residues as a greenhouse gas removal technology[J]. Journal of Cleaner Production, 2021, 312: 127764.
|
106 |
SEPÚLVEDA-CERVANTES Cynthia V, Eduardo SOTO-REGALADO, Pasiano RIVAS-GARCÍA, et al. Technical-environmental optimisation of the activated carbon production of an agroindustrial waste by means response surface and life cycle assessment[J]. Waste Management & Research: the Journal for a Sustainable Circular Economy, 2018, 36(2): 121-130.
|
107 |
刘阳, 靳晨生, 张海亚, 等. 秸秆生物炭的固碳减排潜力及其环境影响[J]. 中国环境科学, 2024, 44(1): 396-403.
|
|
LIU Yang, JIN Chensheng, ZHANG Haiya, et al. Carbon sequestration and emission reduction potential of straw biochar and its environmental impacts[J]. China Environmental Science, 2024, 44(1): 396-403.
|
108 |
STRUHS Ethan, MIRKOUEI Amin, YOU Yaqi, et al. Techno-economic and environmental assessments for nutrient-rich biochar production from cattle manure: A case study in Idaho, USA[J]. Applied Energy, 2020, 279: 115782.
|
109 |
ZHU Xiefei, LABIANCA Claudia, HE Mingjing, et al. Life-cycle assessment of pyrolysis processes for sustainable production of biochar from agro-residues[J]. Bioresource Technology, 2022, 360: 127601.
|
110 |
LI Xianyue, WANG Rongchen, SHAO Chenyang, et al. Biochar and hydrochar from agricultural residues for soil conditioning: Life cycle assessment and microbially mediated C and N cycles[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(11): 3574-3583.
|
111 |
HEIDARI Ava, KHAKI Eshagh, YOUNESI Habibollah, et al. Evaluation of fast and slow pyrolysis methods for bio-oil and activated carbon production from eucalyptus wastes using a life cycle assessment approach[J]. Journal of Cleaner Production, 2019, 241: 118394.
|
112 |
HERSH BENJAMIN, MIRKOUEI AMIN. Life cycle assessment of pyrolysis-derived biochar from organic wastes and advanced feedstocks[C]//Proceedings of ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, August 18-21, 2019, Anaheim, California, USA. 2019
|
113 |
RAJABI HAMEDANI Sara, KUPPENS Tom, MALINA Robert, et al. Life cycle assessment and environmental valuation of biochar production: Two case studies in Belgium[J]. Energies, 2019, 12(11): 2166.
|
114 |
PIEROBON Francesca, EASTIN Ivan L, GANGULY Indroneil. Life cycle assessment of residual lignocellulosic biomass-based jet fuel with activated carbon and lignosulfonate as co-products[J]. Biotechnology for Biofuels, 2018, 11(1): 139.
|
115 |
YUAN Xiangzhou, WANG Junyao, DENG Shuai, et al. Sustainable food waste management: Synthesizing engineered biochar for CO2 capture[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(39): 13026-13036.
|
116 |
WANG Junyao, YUAN Xiangzhou, DENG Shuai, et al. Waste polyethylene terephthalate (PET) plastics-derived activated carbon for CO2 capture: A route to a closed carbon loop[J]. Green Chemistry, 2020, 22(20): 6836-6845.
|
117 |
DUTTA Baishali, RAGHAVAN Vijaya. A life cycle assessment of environmental and economic balance of biochar systems in Quebec[J]. International Journal of Energy and Environmental Engineering, 2014, 5(2): 106.
|
118 |
PUETTMANN Maureen, SAHOO Kamalakanta, WILSON Kelpie, et al. Life cycle assessment of biochar produced from forest residues using portable systems[J]. Journal of Cleaner Production, 2020, 250: 119564.
|
119 |
HAMMOND Jim, SHACKLEY Simon, SOHI Saran, et al. Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK[J]. Energy Policy, 2011, 39(5): 2646-2655.
|
120 |
TADELE Debela, ROY Poritosh, DEFERSHA Fantahun, et al. Life Cycle Assessment of renewable filler material (biochar) produced from perennial grass (Miscanthus) [J]. Aims Energy, 2019, 7(4): 430-440.
|
121 |
ROBERTS Kelli G, GLOY Brent A, JOSEPH Stephen, et al. Life cycle assessment of biochar systems: Estimating the energetic, economic, and climate change potential[J]. Environmental Science & Technology, 2010, 44(2): 827-833.
|
122 |
PAPAGEORGIOU Asterios, AZZI Elias S, ENELL Anja, et al. Biochar produced from wood waste for soil remediation in Sweden: Carbon sequestration and other environmental impacts[J]. The Science of the Total Environment, 2021, 776: 145953.
|
123 |
HJAILA K, BACCAR R, SARRÀ M, et al. Environmental impact associated with activated carbon preparation from olive-waste cake via life cycle assessment[J]. Journal of Environmental Management, 2013, 130: 242-247.
|