Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (6): 2950-2960.DOI: 10.16085/j.issn.1000-6613.2023-0771
• Chemical processes and equipment • Previous Articles
XIONG Yuanfan1,2(), LI Huashan1,2, GONG Yulie1,2()
Received:
2023-05-09
Revised:
2023-06-21
Online:
2024-07-02
Published:
2024-06-15
Contact:
GONG Yulie
通讯作者:
龚宇烈
作者简介:
熊远帆(1999—),男,硕士研究生,研究方向为中深层地热开发与利用。E-mail:jhxyf2021@mail.ustc.edu.cn。
基金资助:
CLC Number:
XIONG Yuanfan, LI Huashan, GONG Yulie. Multi-objective optimal design of evaporative condenser using zeotropic working fluid[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2950-2960.
熊远帆, 李华山, 龚宇烈. 非共沸工质蒸发式冷凝器多目标优化设计[J]. 化工进展, 2024, 43(6): 2950-2960.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0771
参数 | 氨气 | 水蒸气 |
---|---|---|
入口空气干球温度/℃ | 32.52 | 24.32 |
入口空气湿球温度/℃ | 24.91 | 21.36 |
质量流量/t·h-1 | 1.51 | 2.56 |
工质冷凝压力/kPa | 1460.30 | 21.00 |
冷凝传热系数/W·m-2·℃-1 | 858.17 | 864.28 |
参数 | 氨气 | 水蒸气 |
---|---|---|
入口空气干球温度/℃ | 32.52 | 24.32 |
入口空气湿球温度/℃ | 24.91 | 21.36 |
质量流量/t·h-1 | 1.51 | 2.56 |
工质冷凝压力/kPa | 1460.30 | 21.00 |
冷凝传热系数/W·m-2·℃-1 | 858.17 | 864.28 |
参数 | 本文模型计算面积 /m2 | 文献[ | 相对误差 /% |
---|---|---|---|
氨气 | 110.4185 | 114.28 | 3.38 |
水蒸气 | 110.6200 | 114.28 | 3.20 |
参数 | 本文模型计算面积 /m2 | 文献[ | 相对误差 /% |
---|---|---|---|
氨气 | 110.4185 | 114.28 | 3.38 |
水蒸气 | 110.6200 | 114.28 | 3.20 |
参数 | 初始值 | 变化范围 |
---|---|---|
空气干球温度tdb/℃ | 32.00 | — |
空气湿球温度twb/℃ | 27.00 | — |
空气压力Pair/kPa | 101.33 | — |
冷凝工质 | R601a/R245fa | — |
R601a组分质量分数M | 0.50 | 0~1.00 |
冷凝热负荷Qcond/kW | 2000.00 | — |
出口工质温度/℃ | 37.00 | — |
出口工质状态 | 饱和 | — |
空气流量Ga/kg·s-1 | 118.035 | 78.69~157.38 |
喷淋水流量Gw/kg·s-1 | 48.338 | 32.22~64.44 |
冷凝器长/m | 5.00 | — |
冷凝器宽/m | 3.00 | — |
换热管外径Do/mm | 25.00 | — |
换热管水平间距Pt/mm | 50.00 | — |
换热管厚度δ/mm | 2.50 | — |
参数 | 初始值 | 变化范围 |
---|---|---|
空气干球温度tdb/℃ | 32.00 | — |
空气湿球温度twb/℃ | 27.00 | — |
空气压力Pair/kPa | 101.33 | — |
冷凝工质 | R601a/R245fa | — |
R601a组分质量分数M | 0.50 | 0~1.00 |
冷凝热负荷Qcond/kW | 2000.00 | — |
出口工质温度/℃ | 37.00 | — |
出口工质状态 | 饱和 | — |
空气流量Ga/kg·s-1 | 118.035 | 78.69~157.38 |
喷淋水流量Gw/kg·s-1 | 48.338 | 32.22~64.44 |
冷凝器长/m | 5.00 | — |
冷凝器宽/m | 3.00 | — |
换热管外径Do/mm | 25.00 | — |
换热管水平间距Pt/mm | 50.00 | — |
换热管厚度δ/mm | 2.50 | — |
设计参数 | 数值 |
---|---|
R601a组分质量分数M | 0.725 |
空气流量Ga/kg·s-1 | 81.017 |
喷淋水流量Gw/kg·s-1 | 58.302 |
设计参数 | 数值 |
---|---|
R601a组分质量分数M | 0.725 |
空气流量Ga/kg·s-1 | 81.017 |
喷淋水流量Gw/kg·s-1 | 58.302 |
1 | 王国华. 复合蒸发式空冷器管束腐蚀分析及措施[J]. 炼油技术与工程, 2019, 49(12): 45-48. |
WANG Guohua. Corrosion analysis and measures of tube bundle of composite evaporative air cooler[J]. Petroleum Refinery Engineering, 2019, 49(12): 45-48. | |
2 | YANG Hua, XU Chang, YANG Bin, et al. Performance analysis of an Organic Rankine Cycle system using evaporative condenser for sewage heat recovery in the petrochemical industry[J]. Energy Conversion and Management, 2020, 205: 112402. |
3 | ZALEWSKI Wojciech, GRYGLASZEWSKI Piotr Antoni. Mathematical model of heat and mass transfer processes in evaporative fluid coolers[J]. Chemical Engineering and Processing: Process Intensification, 1997, 36(4): 271-280. |
4 | QURESHI Bilal A, ZUBAIR Syed M. The impact of fouling on performance evaluation of evaporative coolers and condensers[J]. International Journal of Energy Research, 2005, 29(14): 1313-1330. |
5 | HEYNS J A, KRÖGER D G. Experimental investigation into the thermal-flow performance characteristics of an evaporative cooler[J]. Applied Thermal Engineering, 2010, 30(5): 492-498. |
6 | FIORENTINO M, STARACE G. The design of countercurrent evaporative condensers with the hybrid method[J]. Applied Thermal Engineering, 2018, 130: 889-898. |
7 | WEI Junqing, LIU Jinping, XU Xiongwen, et al. Experimental and computational investigation of the thermal performance of a vertical tube evaporative condenser[J]. Applied Thermal Engineering, 2019, 160: 114100. |
8 | STARACE Giuseppe, FALCICCHIA Lorenzo, PANICO Pierpaolo, et al. Experimental performance comparison between circular and elliptical tubes in evaporative condensers[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(11): 6363-6373. |
9 | 刘焕成, 蔡祖康. 蒸发式冷凝器热力计算的简化方法[J]. 上海交大科技, 1990(2): 88-93. |
LIU Huancheng, CAI Zukang. Simplified method for thermodynamic calculation of evaporative condenser[J]. China Industrial Economics, 1990(2): 88-93. | |
10 | 朱冬生, 涂爱民, 李元希, 等. 蒸发式冷却器/闭式冷却塔的应用前景及其设计计算[C] //中国制冷学会2007年学术年会论文集. 杭州 2007: 249-253. |
ZHU Dongsheng, TU Aiming, LI Yuanxi, et al. JIANG Xiang. Design and application prospect of evaporative cooler/closed-wet cooling tower[C] // Compilation of Papers at the 2007 Academic Annual Meeting of the Chinese Association of Refrigeration, 2007: 249-253. | |
11 | 唐伟杰, 张旭. 蒸发式冷凝器的换热模型与解析解[J]. 同济大学学报(自然科学版), 2005, 33(7): 942-946. |
TANG Weijie, ZHANG Xu. Heat exchange model and its analytic solution of evaporative condenser[J]. Journal of Tongji University, 2005, 33(7): 942-946. | |
12 | 尾花英朗. 热交换器设计手册[M]. 徐忠权, 译. 北京: 石油工业出版社, 1981. |
Hideo Fleur. Heat exchanger design manual[M]. XU Zhongquan, trans. Beijing: Petroleum Industry Press, 1981. | |
13 | 区志江, 朱冬生. 蒸发式凝汽器的设计优化[J]. 流体机械, 2011, 39(10): 72-77, 82. |
Zhingjiang OU, ZHU Dongsheng. Design optimization of evaporative condenser[J]. Fluid Machinery, 2011, 39(10): 72-77, 82. | |
14 | 申江, 张聪, 路坤仑. 蒸发式冷凝器传热传质性能研究[J]. 低温工程, 2015(1): 45-48, 68. |
SHEN Jiang, ZHANG Cong, LU Kunlun. Experimental investigation of heat and mass transfer in evaporative condenser[J]. Cryogenics, 2015(1): 45-48, 68. | |
15 | 王飞飞, 杨永安, 赵瑞昌, 等. 不同进风方式下蒸发式冷凝器的研究[J]. 低温与超导, 2018, 46(10): 55-59. |
WANG Feifei, YANG Yongan, ZHAO Ruichang, et al. Study on evaporative condenser under different inlet modes[J]. Cryogenics & Superconductivity, 2018, 46(10): 55-59. | |
16 | 陆刘记, 张胜利, 侯俊峰, 等. 肋片板式蒸发冷凝器传热性能及优化研究[J]. 低温与超导, 2022, 50(1): 27-32, 75. |
LU Liuji, ZHANG Shengli, HOU Junfeng, et al. Optimization and research on the performance of heat transer and flow resistance in internal fin-plate evaporative condenser[J]. Cryogenics & Superconductivity, 2022, 50(1): 27-32, 75. | |
17 | 周颖艳, 杜小泽, 杨立军, 等. 吸收烟气余热的非共沸混合工质蒸发换热特性[J]. 中国电机工程学报, 2013, 33(8): 9-15, 4. |
ZHOU Yingyan, DU Xiaoze, YANG Lijun, et al. Heat transfer characteristics of zeotropic mixtures in an ORC evaporator heated by exhaust gas[J]. Proceedings of the CSEE, 2013, 33(8): 9-15, 4. | |
18 | LI Tailu, ZHU Jialing, ZHANG Wei. Cascade utilization of low temperature geothermal water in oilfield combined power generation, gathering heat tracing and oil recovery[J]. Applied Thermal Engineering, 2012, 40: 27-35. |
19 | GARG Pardeep, KUMAR Pramod, SRINIVASAN Kandadai, et al. Evaluation of isopentane, R-245fa and their mixtures as working fluids for organic Rankine cycles[J]. Applied Thermal Engineering, 2013, 51(1/2): 292-300. |
20 | HE Chao, LIU Chao, GAO Hong, et al. The optimal evaporation temperature and working fluids for subcritical organic Rankine cycle[J]. Energy, 2012, 38(1): 136-143. |
21 | XI Huan, LI Mingjia, HE Yaling, et al. Economical evaluation and optimization of organic Rankine cycle with mixture working fluids using R245fa as flame retardant[J]. Applied Thermal Engineering, 2017, 113: 1056-1070. |
22 | 何川, 郭立君, 潘良明. 泵与风机[M]. 5版. 北京: 中国电力出版社, 2008: 55. |
HE Chuan, GUO Lijun, PAN Liangming. Pump and fan[M]. 5th ed. Beijing: China Electric Power Press, 2008: 55. | |
23 | ZHANG Lixin, ZHANG Chao, LIU Jingnan, et al. Nominal condensing capacity and performance evaluation of evaporative condenser[J]. Applied Thermal Engineering, 2016, 107: 79-85. |
24 | 黄泽好, 黄荆荣. 基于代理模型的消声器噪声和背压多目标优化[J]. 西南大学学报(自然科学版), 2022, 44(11): 201-208. |
HUANG Zehao, HUANG Jingrong. Multi-objective optimization of muffler noise and back pressure based on surrogate model[J]. Journal of Southwest University (Natural Science Edition), 2022, 44(11): 201-208. | |
25 | 王威, 胡鹏程, 张攀, 等. 基于代理模型技术的玻璃纤维复合装甲抗弹性能多目标优化设计[J]. 振动与冲击, 2022, 41(18): 16-24. |
WANG Wei, HU Pengcheng, ZHANG Pan, et al. Multi-objective optimization of the ballistic resistance of a glass fiber reinforced composite armor based on a surrogate model[J]. Journal of Vibration and Shock, 2022, 41(18): 16-24. | |
26 | 陈国栋. 基于代理模型的多目标优化方法及其在车身设计中的应用[D]. 长沙: 湖南大学, 2012. |
CHEN Guodong. Multi-objective optimization method based on metamodel and its applications in vehicle body design[D]. Changsha: Hunan University, 2012. | |
27 | 季宁, 张卫星, 于洋洋, 等. 基于最优拉丁超立方抽样方法和NSGA-Ⅱ算法的注射成型多目标优化[J]. 工程塑料应用, 2020, 48(3): 72-77. |
JI Ning, ZHANG Weixing, YU Yangyang, et al. Multi-objective optimization of injection molding based on optimal Latin hypercube sampling method and NSGA-Ⅱ algorithm[J]. Engineering Plastics Application, 2020, 48(3): 72-77. | |
28 | 黄仁龙, 罗向龙, 梁志辉, 等. 基于分液冷凝的R245fa/pentane混合工质朗肯循环多目标优化[J]. 化工学报, 2018, 69(5): 2040-2048. |
HUANG Renlong, LUO Xianglong, LIANG Zhihui, et al. Multi-objective optimization of Rankine cycle using R245fa/pentane based on liquid-vapor separation[J]. CIESC Journal, 2018, 69(5): 2040-2048. | |
29 | 谢江维, 李春利, 黄国明. 响应面法耦合NSGA-Ⅱ算法的隔壁塔结构优化[J]. 化工进展, 2020, 39(8): 2962-2971. |
XIE Jiangwei, LI Chunli, HUANG Guoming. Structural optimization of dividing wall column using response surface methodology coupled with NSGA-Ⅱ algorithm[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 2962-2971. | |
30 | 李恩腾, 徐英杰, 谢小东, 等. 数据驱动的跨临界CO2热泵多目标优化设计[J]. 化工进展, 2020, 39(5): 1657-1666. |
LI Enteng, XU Yingjie, XIE Xiaodong, et al. Data-driven multi-objective optimization design of transcritical CO2 heat pump[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1657-1666. |
[1] | LIU Siyu, YANG Juan, CHEN Pei, CHEN Zutian, YAN Bin, LIU Yuhong, QIU Jieshan. Tuning N-doped configurations of N-enriched porous carbon nanosheets for high-performance zinc ion storage [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2673-2683. |
[2] | CHEN Junxian, LIU Zhen, JIAO Wenlei, ZHANG Tianyu, LYU Jiameng, JI Zhongli. Measurement method of liquid drop concentration in natural gas pipeline based on microwave resonance principle [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 734-742. |
[3] | HENG Linyu, DENG Zhuoran, CHENG Daojian, WEI Bin, ZHAO Liqiang. Progress of high-throughput synthesis device for process reinforcement of metal catalyst preparation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 246-259. |
[4] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[5] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[6] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[7] | YANG Zhiqiang, ZENG Jijun, MA Yiding, YU Tao, ZHAO Bo, LIU Yingzhe, ZHANG Wei, LYU Jian, LI Xingwen, ZHANG Boya, TANG Nian, LI Li, SUN Dongwei. Research status and future trend of sulfur hexafluoride alternatives [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4093-4107. |
[8] | LI Lanyu, HUANG Xinye, WANG Xiaonan, QIU Tong. Reflection and prospects on the intelligent transformation of chemical engineering research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3325-3330. |
[9] | XUE Kai, WANG Shuai, MA Jinpeng, HU Xiaoyang, CHONG Daotong, WANG Jinshi, YAN Junjie. Planning and dispatch of distributed integrated energy systems for industrial parks [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3510-3519. |
[10] | GU Shiya, DONG Yachao, LIU Linlin, ZHANG Lei, ZHUANG Yu, DU Jian. Design and optimization of pipeline system for carbon capture considering intermediate nodes [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2799-2808. |
[11] | LING Shan, LIU Juming, ZHANG Qiancheng, LI Yan. Research progress on simulated moving bed separation process and its optimization methods [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2233-2244. |
[12] | LI Xue, WANG Yanjun, WANG Yuchao, TAO Shengyang. Recent advances in bionic surfaces for fog collection [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2486-2503. |
[13] | ZOU Yincai, LI Qingguo, WU Hui, ZHONG Xiaobing, CHEN Xianzhi. Heat transfer simulation and optimization of missile borne phase change heat sink [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1248-1256. |
[14] | SUN Xiao, ZHU Guangtao, PEI Aiguo. Industrialization and research progress of hydrogen liquefier [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1103-1117. |
[15] | YAN Zihan, CHEN Qunyun, LI Zhuo, FU Rongbing, LI Yanwei, WU Zhigen. Numerical analysis and optimization of the performance of an improved soil crushing and mixing structure [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 72-80. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |