1 |
HU Yang, CHOE Song-Yul, GARRICK T R. Measurement of two-dimensional heat generation rate of pouch type lithium-ion battery using a multifunctional calorimeter[J]. Journal of Power Sources, 2022, 532: 231350.
|
2 |
HU Yang, CHOE Song-Yul. Simultaneous and continuous characterization of reversible and irreversible heat of lithium-ion battery using wavelet transform technique[J]. Electrochimica Acta, 2021, 375: 137973.
|
3 |
XU Xiaobin, ZHANG Hengyun, LIU Shunbo, et al. Surrogate models for lithium-ion battery heat generation based on orthogonal experiments by eliminating external wire connection effect[J]. Applied Thermal Engineering, 2022, 213: 118655.
|
4 |
REN Honglei, JIA Li, DANG Chao, et al. An electrochemical-thermal coupling model for heat generation analysis of prismatic lithium battery[J]. Journal of Energy Storage, 2022, 50: 104277.
|
5 |
ZHU Shan, HE Chunnian, ZHAO Naiqin, et al. Data-driven analysis on thermal effects and temperature changes of lithium-ion battery[J]. Journal of Power Sources, 2021, 482: 228983.
|
6 |
ARORA S, SHEN Weixiang, KAPOOR A. Neural network based computational model for estimation of heat generation in LiFePO4 pouch cells of different nominal capacities[J]. Computers & Chemical Engineering, 2017, 101: 81-94.
|
7 |
PANG Hui, WU Longxing, LIU Jiahao, et al. Physics-informed neural network approach for heat generation rate estimation of lithium-ion battery under various driving conditions[J]. Journal of Energy Chemistry, 2023, 78: 1-12.
|
8 |
YALÇIN S, PANCHAL S, HERDEM M S. A CNN-ABC model for estimation and optimization of heat generation rate and voltage distributions of lithium-ion batteries for electric vehicles[J]. International Journal of Heat and Mass Transfer, 2022, 199: 123486.
|
9 |
MANOHARAN A, BEGAM K K M, APAROW V R, et al. Artificial Neural Networks, Gradient Boosting and Support Vector Machines for electric vehicle battery state estimation: A review[J]. Journal of Energy Storage, 2022, 55: 105384.
|
10 |
BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12.
|
11 |
HE Feifei, ZHOU Jianzhong, FENG Zhongkai, et al. A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm[J]. Applied Energy, 2019, 237: 103-116.
|
12 |
PELIKAN M, GOLDBERG D E, CANTÚ-PAZ E. BOA: The Bayesian optimization algorithm[C]// Proceedings of the Gene-tic and Evolutionary Computation Conference GECCO-99. 1999: 525-532.
|
13 |
李亚茹, 张宇来, 王佳晨. 面向超参数估计的贝叶斯优化方法综述[J]. 计算机科学, 2022, 49(S1): 86-92.
|
|
LI Yaru, ZHANG Yulai, WANG Jiachen. Survey on Bayesian optimization methods for hyper-parameter tuning[J]. Computer Science, 2022, 49(S1): 86-92.
|
14 |
KINGMA D P, BA J. Adam: A method for stochastic optimization[C]// International Conference on Learning Representations 2015, San Diego, 2015.
|
15 |
李扬. 动力锂离子电池电学参数及热物性测量方法研究[D]. 北京: 中国科学院大学, 2019.
|
|
LI Yang. Study on measurement methods of electrical parameters and thermophysical properties of power lithium-ion batteries[D]. Beijing: University of Chinese Academy of Sciences, 2019.
|
16 |
李晟延, 马鸿雁, 窦嘉铭, 等. 基于PBES-LS-SVM的锂离子电池组SOC预测[J]. 电源技术, 2022, 46(11): 1279-1283.
|
|
LI Shengyan, MA Hongyan, DOU Jiaming, et al. SOC prediction of Li-ion battery pack based on PBES-LS-SVM[J]. Chinese Journal of Power Sources, 2022, 46(11): 1279-1283.
|