Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (1): 390-399.DOI: 10.16085/j.issn.1000-6613.2023-0221
• Energy processes and technology • Previous Articles
FENG Debin1(), WANG Wen1(), MA Fanhua2
Received:
2023-02-20
Revised:
2023-04-27
Online:
2024-02-05
Published:
2024-01-20
Contact:
WANG Wen
通讯作者:
王文
作者简介:
封德彬(1997—),男,硕士研究生,研究方向为氢储运。E-mail:debinfeng@sjtu.edu.cn。
基金资助:
CLC Number:
FENG Debin, WANG Wen, MA Fanhua. Simulation and analysis for pipeline transportation characteristics of hydrogen-enriched compressed natural gas[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 390-399.
封德彬, 王文, 马凡华. 掺氢天然气的管道输运特性仿真与分析[J]. 化工进展, 2024, 43(1): 390-399.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0221
项目 | f(T, p, ρ)=0 | f(T, p, λ)=0 | f(T, p, cp )=0 | f(T, p, η)=0 |
---|---|---|---|---|
相对误差/% | 1.13 | 0.66 | 0.93 | 0.82 |
相对计算速度 | 18.18 | 19.23 | 17.54 | 18.52 |
项目 | f(T, p, ρ)=0 | f(T, p, λ)=0 | f(T, p, cp )=0 | f(T, p, η)=0 |
---|---|---|---|---|
相对误差/% | 1.13 | 0.66 | 0.93 | 0.82 |
相对计算速度 | 18.18 | 19.23 | 17.54 | 18.52 |
参数 | 组分 | ||||||
---|---|---|---|---|---|---|---|
CH4 | C2H6 | C3H8 | n-C4H10 | i-C4H10 | n-C5H12 | N2 | |
摩尔分数/% | 96.25 | 1.77 | 0.3 | 0.075 | 0.060 | 0.125 | 1.42 |
参数 | 组分 | ||||||
---|---|---|---|---|---|---|---|
CH4 | C2H6 | C3H8 | n-C4H10 | i-C4H10 | n-C5H12 | N2 | |
摩尔分数/% | 96.25 | 1.77 | 0.3 | 0.075 | 0.060 | 0.125 | 1.42 |
参数 | 管道① | 管道② | 管道③ | 管道④ |
---|---|---|---|---|
管段 | 西气东输二线干线 | 西气东输一线干线 | 冀宁联络线 | 兰州-银川联络线 |
管道规格mm×mm | ϕ1219×22 | ϕ1016×16.8 | ϕ711×8 | ϕ610×7.5 |
参数 | 管道① | 管道② | 管道③ | 管道④ |
---|---|---|---|---|
管段 | 西气东输二线干线 | 西气东输一线干线 | 冀宁联络线 | 兰州-银川联络线 |
管道规格mm×mm | ϕ1219×22 | ϕ1016×16.8 | ϕ711×8 | ϕ610×7.5 |
1 | 王燕涛, 李勇, 王大亮, 等. 基于DEA模型的风能资源利用效率评价研究——甘肃、吉林等25省区实证分析[J]. 科技管理研究, 2017, 37(8): 82-87. |
WANG Yantao, LI Yong, WANG Daliang, et al. Research on evaluation of wind energy utilization efficiency based on DEA model: An empirical analysis of Jilin and Gansu etc. 25 provincial regions[J]. Science and Technology Management Research, 2017, 37(8): 82-87. | |
2 | 姚玉璧, 郑绍忠, 杨扬, 等. 中国太阳能资源评估及其利用效率研究进展与展望[J]. 太阳能学报, 2022, 43(10): 524-535. |
YAO Yubi, ZHENG Shaozhong, YANG Yang, et al. Progress and prospects on solar energy resource evaluation and utilization efficiency in China[J]. Acta Energiae Solaris Sinica, 2022, 43(10): 524-535. | |
3 | 岳国君, 林海龙. 以生物质为原料的未来绿色氢能[J]. 化工进展, 2021, 40(8): 4678-4684. |
YUE Guojun, LIN Hailong, et al. Future green hydrogen energy from biomass[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4678-4684. | |
4 | 赵永志, 蒙波, 陈霖新, 等. 氢能源的利用现状分析[J]. 化工进展, 2015, 34(9): 3248-3255. |
ZHAO Yongzhi, MENG Bo, CHEN Linxin, et al. Utilization status of hydrogen energy[J]. Chemical Industry and Engineering Progress, 2015, 34(9): 3248-3255. | |
5 | 张轩, 樊昕晔, 吴振宇, 等. 氢能供应链成本分析及建议[J]. 化工进展, 2022, 41(5): 2364-2371. |
ZHANG Xuan, FAN Xinye, WU Zhenyu, et al. Hydrogen energy supply chain cost analysis and suggestions[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2364-2371. | |
6 | MELAINA M W, ANTONIA O, PENEV M. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues. [R]. United States: National Renewable Energy Lab, Golden, CO. 2013. |
7 | 吴嫦. 天然气掺混氢气使用的可行性研究[D]. 重庆: 重庆大学, 2018. |
WU Chang. Feasibility study on the use of natural gas mixed with hydrogen[D]. Chongqing: Chongqing University, 2018. | |
8 | ISAAC T. HyDeploy: The UK’s first hydrogen blending deployment project[J]. Clean Energy, 2019, 3(2): 114-125. |
9 | TIMMERBERG S, KALTSCHMITT M. Hydrogen from renewables: Supply from North Africa to Central Europe as blend in existing pipelines-Potentials and costs[J]. Applied Energy, 2019, 237: 795-809. |
10 | CERNIAUSKAS S, JOSE CHAVEZ JUNCO A, GRUBE T, et al. Options of natural gas pipeline reassignment for hydrogen: Cost assessment for a Germany case study[J]. International Journal of Hydrogen Energy, 2020, 45(21): 12095-12107. |
11 | 陈伟锋, 尚娟, 邢百汇, 等. 关于天然气管网安全掺氢比10%的商榷[J]. 化工进展, 2022, 41(3): 1487-1493. |
CHEN Weifeng, SHANG Juan, XING Baihui, et al. Discussion on 10%as a safe ratio of hydrogen mixing into natural gas grids[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1487-1493. | |
12 | 国家市场监督管理总局,中国国家标准化管理委员会. 进入天然气长输管道的气体质量要求: [S]. 北京: 中国标准出版社, 2019. |
Standardization Administration of the People's Republic of China, Administration Standardization. Quality requirements for gases entering long-distance transportation gas pipeline: [S]. Beijing: Standards Press of China, 2019. | |
13 | 李敬法, 苏越, 张衡, 等. 掺氢天然气管道输送研究进展[J]. 天然气工业, 2021, 41(4): 137-152. |
LI Jingfa, SU Yue, ZHANG Heng, et al. Research progresses on pipeline transportation of hydrogen-blended natural gas[J]. Natural Gas Industry, 2021, 41(4): 137-152. | |
14 | ALI ABD A, NAJI S Z, THIAN T C, et al. Evaluation of hydrogen concentration effect on the natural gas properties and flow performance[J]. International Journal of Hydrogen Energy, 2021, 46(1): 974-983. |
15 | LI Jingfa, SU Yue, YU Bo, et al. Influences of hydrogen blending on the joule-Thomson coefficient of natural gas[J]. ACS Omega, 2021, 6(26): 16722-16735. |
16 | STEEN M. Building a hydrogen infrastructure in the EU[M]// Compendium of Hydrogen Energy. Amsterdam: Elsevier, 2016: 267-292. |
17 | GUANDALINI G, COLBERTALDO P, CAMPANARI S. Dynamic modeling of natural gas quality within transport pipelines in presence of hydrogen injections[J]. Applied Energy, 2017, 185: 1712-1723. |
18 | BRYNOLF S, TALJEGARD M, GRAHN M, et al. Electrofuels for the transport sector: A review of production costs[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1887-1905. |
19 | SCHOUTEN J. Effect of H2-injection on the thermodynamic and transportation properties of natural gas[J]. International Journal of Hydrogen Energy, 2004, 29(11)1173-1180. |
20 | 黄明, 吴勇, 文习之, 等. 利用天然气管道掺混输送氢气的可行性分析[J]. 煤气与热力, 2013, 33(4): 39-42. |
HUANG Ming, WU Yong, WEN Xizhi, et al. Feasibility analysis of hydrogen transport in natural gas pipeline[J]. Gas & Heat, 2013, 33(4): 39-42. | |
21 | ZHANG Heng, LI Jingfa, SU Yue, et al. Effects of hydrogen blending on hydraulic and thermal characteristics of natural gas pipeline and pipe network[J]. Oil & Gas Science and Technology-Revue d’IFP Energies nouvelles, 2021, 76: 70. |
22 | 王玮, 王秋岩, 邓海全, 等. 天然气管道输送混氢天然气的可行性[J]. 天然气工业, 2020, 40(3)130-136. |
WANG Wei, WANG Qiuyan, DENG Haiquan, et al. Feasibility analysis on the transportation of hydrogen-natural gas mixtures in natural gas pipelines[J]. Natural Gas Industry, 2020, 40(3)130-136. | |
23 | 朱建鲁, 周慧, 李玉星, 等. 掺氢天然气输送管道设计动态模拟[J]. 天然气工业, 2021, 41(11): 132-142. |
ZHU Jianlu, ZHOU Hui, LI Yuxing, et al. Dynamic simulation of hydrogen-doped natural gas pipeline design[J]. Natural Gas Industry, 2021, 41(11): 132-142. | |
24 | STARLING K E. Fluid thermodynamic properties for light petroleum systems[M]. Houston: Gulf Pub. Co., 1973. |
25 | 吴玉国, 陈保东. BWRS方程在天然气物性计算中的应用[J]. 油气储运, 2003, 22(10): 16-21. |
WU Yuguo, CHEN Baodong. The application of BWRS equation in calculating the thermo-physical properties of natural gas[J]. Oil & Gas Storage and Transportation, 2003, 22(10): 16-21. | |
26 | DING Guoliang, WU Zhigang, LIU Jian, et al. An implicit curve-fitting method for fast calculation of thermal properties of pure and mixed refrigerants[J]. International Journal of Refrigeration, 2005, 28(6): 921-932. |
27 | 吴志刚, 丁国良. 制冷剂热力性质的快速计算Ⅰ. 计算方法[J]. 上海交通大学学报, 2006, 40(2): 297-300. |
WU Zhigang, DING Guoliang. The fast calculation of refrigerant thermodynamic properties: Ⅰ. Principle[J]. Journal of Shanghai Jiao Tong University, 2006, 40(2): 297-300. | |
28 | 赵丹, 吴志刚, 丁国良. 超临界区制冷剂热力性质快速计算方法[J]. 工程热物理学报, 2008, 29(10): 1645-1648. |
ZHAO Dan, WU Zhigang, DING Guoliang. Fast calculation method for supercritical refrigerant thermodynamic properties[J]. Journal of Engineering Thermophysics, 2008, 29(10): 1645-1648. | |
29 | 易冲冲, 王文, 卢超. 隐式拟合在天然气热力性质计算中的应用[J]. 油气储运, 2014, 33(3): 283-286. |
YI Chongchong, WANG Wen, LU Chao. Application of implicit curve-fitting in the calculation of thermodynamic property of natural gas[J]. Oil & Gas Storage and Transportation, 2014, 33(3): 283-286. | |
30 | 郑建国. 大型天然气管网仿真计算引擎的研究与实现[D]. 成都: 西南石油大学, 2012. |
ZHENG Jianguo. Research and implementation of simulation engine for large natural gas pipeline network[D]. Chengdu: Southwest Petroleum University, 2012. | |
31 | WANG Peng, YU Bo, DENG Yajun, et al. Comparison study on the accuracy and efficiency of the four forms of hydraulic equation of a natural gas pipeline based on linearized solution[J]. Journal of Natural Gas Science and Engineering, 2015, 22: 235-244. |
32 | HELGAKER J F, YTREHUS T. Coupling between continuity/momentum and energy equation in 1D gas flow[J]. Energy Procedia, 2012, 26: 82-89. |
33 | 郑建国, 宋飞, 陈国群, 等. 大型天然气管道仿真软件RealPipe-Gas研发[J]. 油气储运, 2011, 30(9): 659-662. |
ZHENG Jianguo, SONG Fei, CHEN Guoqun, et al. Development of RealPipe-gas simulation software for large natural gas pipeline[J]. Oil & Gas Storage and Transportation, 2011, 30(9): 659-662. | |
34 | LUSKIN M. An approximation procedure for nonsymmetric, nonlinear hyperbolic systems with integral boundary conditions[J]. SIAM Journal on Numerical Analysis, 1979, 16(1): 145-164. |
35 | WANG Peng, AO Shangmin, YU Bo, et al. An efficiently decoupled implicit method for complex natural gas pipeline network simulation[J]. Energies, 2019, 12(8): 1516. |
36 | 王鹏. 复杂天然气管网快速准确稳健仿真方法研究及应用[D]. 北京: 中国石油大学(北京), 2016. |
WANG Peng. Research and application of fast, accurate and robust simulation method for complex natural gas pipeline network[D]. Beijing: China University of Petroleum (Beijing), 2016. | |
37 | 吴清松. 计算热物理引论[M]. 合肥: 中国科学技术大学出版社,2009. |
WU Qingsong. Introduction to computational thermophysics[M]. Hefei: University of Science and Technology of China Press, 2009. | |
38 | 张月庆. 天然气长输管道末段数值模拟及储气量研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. |
ZHANG Yueqing. Numerical simulation of the last section of long-distance natural gas pipeline and study on gas storage capacity[D]. Harbin: Harbin Institute of Technology, 2013. | |
39 | 向贵宝. 基于Aspen与Isight天然气长输管网的模拟与优化[D]. 天津: 天津大学, 2016. |
XIANG Guibao. Simulation and optimization of natural gas long-distance pipeline network based on aspen and isight[D]. Tianjin: Tianjin University, 2016. | |
40 | 罗德通, 万夫伟, 王海燕. 基于ANSYS的X80管线钢焊接数值模拟[J]. 焊管, 2014, 37(1): 18-21. |
LUO Detong, WAN Fuwei, WANG Haiyan. Welding numerical simulation of X80 pipeline steel based on ANSYS[J]. Welded Pipe and Tube, 2014, 37(1): 18-21. | |
41 | GONDAL I A. Hydrogen transportation by pipelines[M]// Compendium of Hydrogen Energy. Amsterdam: Elsevier, 2016: 301-322. |
42 | TABKHI F, AZZARO-PANTEL C, PIBOULEAU L, et al. A mathematical framework for modelling and evaluating natural gas pipeline networks under hydrogen injection[J]. International Journal of Hydrogen Energy, 2008, 33(21): 6222-6231. |
43 | 李玉星, 姚光镇. 输气管道设计与管理[M]. 2版. 青岛: 中国石油大学出版社, 2009. |
LI Yuxing, YAO Guangzhen. Design and management of gas transmission pipeline[M]. 2nd ed. Qingdao: China University of Petroleum Press, 2009. | |
44 | 肖杰. 枝状天然气管网调峰方案综合评价研究[D]. 成都: 西南石油大学, 2014. |
XIAO Jie. Study on comprehensive evaluation of peak shaving scheme of dendritic natural gas pipeline network[D]. Chengdu: Southwest Petroleum University, 2014. |
[1] | SU Mengjun, LIU Jian, XIN Jing, CHEN Yufei, ZHANG Haihong, HAN Longnian, ZHU Yuanbao, LI Hongbao. Progress in the application of gas-liquid mixing intensification in fixed-bed hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 100-110. |
[2] | GAI Hongwei, ZHANG Chenjun, QU Jingying, SUN Huailu, TUO Yongxiao, WANG Bin, JIN Xu, ZHANG Xi, FENG Xiang, CHEN De. Research progress on catalytic dehydrogenation process intensification for liquid organic hydride carrier hydrogen storage [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 164-185. |
[3] | WANG Lihua, CAI Suhang, JIANG Wentao, LUO Qian, LUO Yong, CHEN Jianfeng. Research progress of micro and nano scale gas-liquid mass transfer to intensify catalytic hydrogenation of oil products [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 19-33. |
[4] | XIE Guangshuo, ZHANG Siliang, HE Song, XIAO Juan, WANG Simin. Global sensitivity analysis for particulate fouling performance based on metamodel of optimal prognosis [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 328-337. |
[5] | SUN Chongzheng, LI Yuxing, XU Jie, HAN Hui, SONG Guangchun, LU Xiao. Offshore adaptability enhancement mechanism of falling film flow outside the FLH2 channel tube during floating hydrogen energy storage and transportation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 338-352. |
[6] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[7] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[8] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[9] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[10] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[11] | YANG Jianping. PSE for feedstock consumption reduction in reaction system of HPPO plant [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 21-32. |
[12] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[13] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[14] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[15] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |