Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (1): 400-406.DOI: 10.16085/j.issn.1000-6613.2023-0229

• Energy processes and technology • Previous Articles    

BP neural network approach for heat generation rate estimation of power battery for electric vehicles

WANG Jinghan1,2(), LYU Jie2(), ZHAO Ding2, LIN Wenye1,2, SONG Wenji1,2, FENG Ziping1,2   

  1. 1.School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230027, Anhui, China
    2.Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China
  • Received:2023-02-21 Revised:2023-04-27 Online:2024-02-05 Published:2024-01-20
  • Contact: LYU Jie

基于BP神经网络的电动汽车动力电池产热估计

王敬翰1,2(), 吕杰2(), 赵丁2, 林文野1,2, 宋文吉1,2, 冯自平1,2   

  1. 1.中国科学技术大学能源科学与技术学院,安徽 合肥 230027
    2.中国科学院广州能源研究所,广东 广州 510640
  • 通讯作者: 吕杰
  • 作者简介:王敬翰(1998—),男,硕士研究生,研究方向为电动汽车整车热管理。E-mail:wangjh1@ms.giec.ac.cn
  • 基金资助:
    国家重点研发计划(2021YFE0112500)

Abstract:

The heat generation of battery is one of the critical indicators of battery thermal management. Accurate estimation of the heat generation rate of the battery is crucial to building an efficient battery thermal management system and thereby facilitating the safe driving of electric vehicles. However, most researchers currently rely on model-based simulations to estimate the heat generation rate of electric vehicle batteries. There are some disadvantages in this method, such as time-consuming and only application to some specific battery condition, which impede its wide application in addressing real-time heat generation rate of battery for electric vehicles. This paper proposed a precise battery heat production rate estimation strategy based on BO-Adam-BP neural network approach, that was, an electric vehicle power battery heat production estimation model based on BP neural network. The model used the Bayesian optimization algorithm (Bayesian optimization, BO) to select hyperparameters of BP (back propagation, BP) neural network, and used Adam (adaptive momentum estimation) optimization algorithm to speed up the convergence speed and improve the accuracy and stability of the model. Comparing to the battery heat generation power of constant current discharge experiments under different discharge rates and various ambient temperatures, the results showed that the estimated average error of the model was 5.01%, and the maximum error was only 5.53W. The R2 fitting index could reach up to 99.98%, proving that the proposed battery heat production estimation model had achieved high accuracy and strong robustness, providing a paradigm structure for real-time heat production estimation of electric vehicle batteries.

Key words: electric vehicle, power battery, BP neural network, heat generation rate estimation, optimization algorithm

摘要:

电池的产热情况是电池热管理的重要指标之一,准确估计电池产热功率对构建高效运行的电池热管理系统以确保电动汽车安全行驶至关重要。然而,目前大多采用基于模型的方法进行电池产热估计,但此方法存在耗费时间长和仅应用于某种特定电池状况产热估计等缺点,无法解决电动汽车电池实时产热估计的问题。对此,本文提出了一种基于人工智能算法的精准电池产热功率估计方法,即基于BP(back propagation,BP)神经网络的电动汽车动力电池产热估计模型。该模型利用贝叶斯优化算法(Bayesian optimization,BO)对BP神经网络进行超参数选取,采用Adam(adaptive momentum estimation,Adam)优化算法加快收敛速度,提高了模型的准确度和稳定性。研究对比了不同放电倍率和不同环境温度下恒流放电实验的电池产热功率,结果表明模型的估计平均误差为5.01%,最大误差仅为5.53W,R2拟合指标最高可达99.98%,证明了所提出的电池产热估计模型取得了较高的估计精度和较强的鲁棒性,为电动汽车电池实时产热估计提供了一个范式结构。

关键词: 电动汽车, 动力电池, BP神经网络, 产热估计, 优化算法

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd