Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (9): 4994-5002.DOI: 10.16085/j.issn.1000-6613.2022-1883
• Resources and environmental engineering • Previous Articles Next Articles
WANG Xueting1(), GU Xia1, XU Xianbao1, ZHAO Lei2, XUE Gang1, LI Xiang1()
Received:
2022-10-10
Revised:
2022-11-02
Online:
2023-09-28
Published:
2023-09-15
Contact:
LI Xiang
王雪婷1(), 顾霞1, 徐先宝1, 赵磊2, 薛罡1, 李响1()
通讯作者:
李响
作者简介:
王雪婷(1997—),女,硕士研究生,研究方向为固废处理与资源化。E-mail:wangxueting0116@163.com。
基金资助:
CLC Number:
WANG Xueting, GU Xia, XU Xianbao, ZHAO Lei, XUE Gang, LI Xiang. Effectiveness of hydrothermal pretreatment on valeric acid production during food waste fermentation[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4994-5002.
王雪婷, 顾霞, 徐先宝, 赵磊, 薛罡, 李响. 水热预处理对餐厨垃圾厌氧发酵产戊酸的影响[J]. 化工进展, 2023, 42(9): 4994-5002.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1883
样品名称 | 发酵时间/d | ||||||
---|---|---|---|---|---|---|---|
2 | 4 | 6 | 8 | 10 | 12 | 14 | |
DY-B | —① | — | — | 6.12 | 6.06 | 6.48 | — |
DY-80 | — | 4.66 | 2.08 | 1.90 | 1.81 | 1.81 | 0.23 |
DY-100 | — | 0.86 | 0.74 | 0.65 | 0.39 | 0.00 | 0.00 |
DY-120 | — | 0.14 | 0.13 | 0.11 | 0.00 | 0.00 | 0.00 |
DY-140 | 1.30 | 0.77 | 0.57 | 0.57 | 0.50 | 0.15 | 0.00 |
DY-160 | — | 0.93 | 0.69 | 0.72 | 0.61 | 0.00 | 0.00 |
DY-180 | — | 0.67 | 0.65 | 0.65 | 0.54 | 0.00 | 0.00 |
WAS-B | 1.55 | 0.84 | 0.29 | 0.05 | 0.00 | 0.00 | 0.00 |
WAS-80 | 0.42 | 0.11 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 |
WAS-100 | 0.40 | 0.16 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 |
WAS-120 | 0.49 | 0.57 | 0.09 | 0.08 | 0.05 | 0.00 | 0.00 |
WAS-140 | 1.04 | 1.02 | 0.19 | 0.16 | 0.12 | 0.00 | 0.00 |
WAS-160 | 1.46 | 0.44 | 0.28 | 0.27 | 0.24 | 0.00 | 0.00 |
WAS-180 | — | 0.94 | 0.27 | 0.27 | 0.14 | 0.00 | 0.00 |
样品名称 | 发酵时间/d | ||||||
---|---|---|---|---|---|---|---|
2 | 4 | 6 | 8 | 10 | 12 | 14 | |
DY-B | —① | — | — | 6.12 | 6.06 | 6.48 | — |
DY-80 | — | 4.66 | 2.08 | 1.90 | 1.81 | 1.81 | 0.23 |
DY-100 | — | 0.86 | 0.74 | 0.65 | 0.39 | 0.00 | 0.00 |
DY-120 | — | 0.14 | 0.13 | 0.11 | 0.00 | 0.00 | 0.00 |
DY-140 | 1.30 | 0.77 | 0.57 | 0.57 | 0.50 | 0.15 | 0.00 |
DY-160 | — | 0.93 | 0.69 | 0.72 | 0.61 | 0.00 | 0.00 |
DY-180 | — | 0.67 | 0.65 | 0.65 | 0.54 | 0.00 | 0.00 |
WAS-B | 1.55 | 0.84 | 0.29 | 0.05 | 0.00 | 0.00 | 0.00 |
WAS-80 | 0.42 | 0.11 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 |
WAS-100 | 0.40 | 0.16 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 |
WAS-120 | 0.49 | 0.57 | 0.09 | 0.08 | 0.05 | 0.00 | 0.00 |
WAS-140 | 1.04 | 1.02 | 0.19 | 0.16 | 0.12 | 0.00 | 0.00 |
WAS-160 | 1.46 | 0.44 | 0.28 | 0.27 | 0.24 | 0.00 | 0.00 |
WAS-180 | — | 0.94 | 0.27 | 0.27 | 0.14 | 0.00 | 0.00 |
样品名称 | Chao1 | Shannon | Simpson |
---|---|---|---|
DY-B | 555.58 | 3.87 | 0.86 |
DY-100 | 551.48 | 3.90 | 0.83 |
DY-140 | 613.44 | 4.95 | 0.90 |
DY-160 | 556.77 | 5.33 | 0.94 |
DY-180 | 661.03 | 4.61 | 0.87 |
WAS-B | 1817.48 | 5.55 | 0.87 |
WAS-100 | 1373.34 | 4.36 | 0.77 |
WAS-140 | 1290.43 | 4.53 | 0.73 |
WAS-160 | 1071.31 | 3.07 | 0.51 |
WAS-180 | 978.67 | 2.77 | 0.44 |
样品名称 | Chao1 | Shannon | Simpson |
---|---|---|---|
DY-B | 555.58 | 3.87 | 0.86 |
DY-100 | 551.48 | 3.90 | 0.83 |
DY-140 | 613.44 | 4.95 | 0.90 |
DY-160 | 556.77 | 5.33 | 0.94 |
DY-180 | 661.03 | 4.61 | 0.87 |
WAS-B | 1817.48 | 5.55 | 0.87 |
WAS-100 | 1373.34 | 4.36 | 0.77 |
WAS-140 | 1290.43 | 4.53 | 0.73 |
WAS-160 | 1071.31 | 3.07 | 0.51 |
WAS-180 | 978.67 | 2.77 | 0.44 |
1 | 陈雨佳. Fe3O4介导提升厌氧发酵定向生产奇/偶数碳VFAs效能的研究[D]. 广州: 广州大学, 2022. |
CHEN Yujia. Study on Fe3O4 mediated improvement of the efficiency of directional production of odd/even carbon VFAs by anaerobic fermentation[D]. Guangzhou: Guangzhou University, 2022. | |
2 | SHI Binfang, HUANG Jingang, YIN Zhenjiang, et al. Riboflavin boosts fermentative valeric acid generation from waste activated sludge[J]. BioResources, 2020, 15(2): 3962-3969. |
3 | LANGE Jean-Paul, PRICE Richard, AYOUB Paul M, et al. Valeric biofuels: A platform of cellulosic transportation fuels[J]. Angewandte Chemie International Edition, 2010, 49(26): 4479-4483. |
4 | 易悦, 王慧中, 郑丹, 等. 丁酸和戊酸互营氧化产甲烷微生物学研究进展[J]. 中国沼气, 2017, 35(3): 3-10. |
YI Yue, WANG Huizhong, ZHENG Dan, et al. Microbiology research progress of syntrophic butyrate and valerate oxidization producing methane[J]. China Biogas, 2017, 35(3): 3-10. | |
5 | BISSELINK Roel J M, CROCKATT Marc, ZIJLSTRA Martin, et al. Identification of more benign cathode materials for the electrochemical reduction of levulinic acid to valeric acid[J]. ChemElectroChem, 2019, 6(13): 3285-3290. |
6 | GRESES Silvia, Elia TOMÁS-PEJÓ, Cristina GONZÁLEZ-FERNÁNDEZ. Food waste valorization into bioenergy and bioproducts through a cascade combination of bioprocesses using anaerobic open mixed cultures[J]. Journal of Cleaner Production, 2022, 372: 133680. |
7 | 张艳艳, 白佳喆, 左剑恶. 己酸菌富集及其利用餐厨垃圾产己酸的研究[J]. 中国环境科学, 2022, 42(6): 2724-2733. |
ZHANG Yanyan, BAI Jiazhe, ZUO Jian’e. Enrichment of caproate bacteria and its application in caproic acid production from food waste[J]. China Environmental Science, 2022, 42(6): 2724-2733. | |
8 | WANG J L, YIN Y N. Biological production of medium-chain carboxylates through chain elongation: An overview[J]. Biotechnology Advances, 2022, 55: 107882. |
9 | GROOTSCHOLTEN T I M, STEINBUSCH K J J, HAMELERS H V M, et al. High rate heptanoate production from propionate and ethanol using chain elongation[J]. Bioresource Technology, 2013, 136: 715-718. |
10 | Ramon GANIGUÉ, NAERT Pieter, CANDRY Pieter, et al. Fruity flavors from waste: A novel process to upgrade crude glycerol to ethyl valerate[J]. Bioresource Technology, 2019, 289: 121574. |
11 | SPIRITO Catherine M, RICHTER Hanno, RABAEY Korneel, et al. Chain elongation in anaerobic reactor microbiomes to recover resources from waste[J]. Current Opinion in Biotechnology, 2014, 27: 115-122. |
12 | 郭志超,徐先宝,徐婷婷,等. 接种不同菌源的餐厨垃圾发酵代谢途径及产己酸效能分析[J]. 环境工程,2021, 39(9): 160-168. |
GUO Zhichao, XU Xianbao, XU Tingting, et al. Analysis on fermentation pathway and caproate production from food waste by different inoculum[J]. Environmental Engineering, 2021, 39(9): 160-168. | |
13 | 刘昊鹏. 不同电子供体对微生物碳链延长合成中链脂肪酸的影响及机理研究[D]. 北京: 北京化工大学, 2021. |
LIU Haopeng. The study of medium chain fatty acid prodcution through chain elongation with different electron donor[D]. Beijing: Beijing University of Chemical Technology, 2021. | |
14 | TAHERZADEH Mohammad J, KARIMI Keikhosro. Fermentation inhibitors in ethanol processes and different strategies to reduce their effects[M]//Biofuels. Amsterdam: Elsevier, 2011: 287-311. |
15 | TAUER Andreas, ELSS Sandra, FRISCHMANN Matthias, et al. Influence of thermally processed carbohydrate/amino acid mixtures on the fermentation by Saccharomyces cerevisiae [J]. Journal of Agricultural and Food Chemistry, 2004, 52(7): 2042-2046. |
16 | 全威. 马铃薯制品中三类美拉德反应危害物的形成及其对健康的影响[D]. 无锡: 江南大学, 2021. |
QUAN Wei. The formation and health effects of three kinds of Maillard reaction harmful products from potato products[D]. Wuxi: Jiangnan University, 2021. | |
17 | VERAS S T S, CAVALCANTE W A, GEHRING T A, et al. Anaerobic production of valeric acid from crude glycerol via chain elongation[J]. International Journal of Environmental Science and Technology, 2020, 17(3): 1847-1858. |
18 | 罗锦. 泔脚废油脂厌氧发酵定向生成奇数碳VFAs的优化及长链脂肪酸的影响[D]. 广州: 广州大学, 2021. |
LUO Jin. Directional optimization of odd-carbon VFAs production from hogwash waste grease by anaerobic fermentation and the effect of long-chain fatty acids[D]. Guangzhou: Guangzhou University, 2021. | |
19 | 李琦. 污泥干式厌氧发酵过程中腐殖酸的转化规律及其对产甲烷的影响[D]. 太原: 太原理工大学, 2019. |
LI Qi. The transformation of humic acid in sludge dry anaerobic fermentation and its effect on methane production[D]. Taiyuan: Taiyuan University of Technology, 2019. | |
20 | LI Jun, ZHANG Wenjuan, LI Xiang, et al. Production of lactic acid from thermal pretreated food waste through the fermentation of waste activated sludge: Effects of substrate and thermal pretreatment temperature[J]. Bioresource Technology, 2018, 247: 890-896. |
21 | COMA M, VILCHEZ-VARGAS R, ROUME H, et al. Product diversity linked to substrate usage in chain elongation by mixed-culture fermentation[J]. Environmental Science & Technology, 2016, 50(12): 6467-6476. |
22 | YIN Jun, LIU Jiaze, CHEN Ting, et al. Influence of melanoidins on acidogenic fermentation of food waste to produce volatility fatty acids[J]. Bioresource Technology, 2019, 284: 121-127. |
23 | ANGENENT Largus T, RICHTER Hanno, BUCKEL Wolfgang, et al. Chain elongation with reactor microbiomes: open-culture biotechnology to produce biochemicals[J]. Environmental Science & Technology, 2016, 50(6): 2796-2810. |
24 | 吴清莲. 乙醇和乳酸引导的碳链增长技术生产中链羧酸的研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
WU Qinglian. Study on medium chain carboxylic acid production from chain elongation technology induced by ethanol and lactate[D]. Harbin: Harbin Institute of Technology, 2019. | |
25 | WU Qinglian, GUO Wanqian, BAO Xian, et al. Upgrading liquor-making wastewater into medium chain fatty acid: Insights into co-electron donors, key microflora, and energy harvest[J]. Water Research, 2018, 145: 650-659. |
26 | 苑荣雪. 基于剩余污泥厌氧发酵产物合成中链脂肪酸的可行性研究[D]. 上海: 上海交通大学, 2020. |
YUAN Rongxue. Study on medium chain fatty acids biosynthesis base on anaerobic fermentation products of waste activated sludge[D]. Shanghai: Shanghai Jiao Tong University, 2020. | |
27 | XU Xianbao, GU Xia, YE Tingting, et al. Overcoming carboxylic acid inhibition by granular consortia in high-load liquefied food waste fermentation for efficient lactate accumulation[J]. Journal of Cleaner Production, 2022, 369: 133438. |
28 | DAI Xiaohu, LI Xiaoshuai, ZHANG Dong, et al. Simultaneous enhancement of methane production and methane content in biogas from waste activated sludge and perennial ryegrass anaerobic co-digestion: The effects of pH and C/N ratio[J]. Bioresource Technology, 2016, 216: 323-330. |
29 | ZHANG Qianqian, ZHAO Xingyu, LI Wenjing, et al. Responses of short-chain fatty acids production to the addition of various biocarriers to sludge anaerobic fermentation[J]. Bioresource Technology, 2020, 304: 122989. |
30 | WU Qinglian, BAO Xian, GUO Wanqian, et al. Medium chain carboxylic acids production from waste biomass: Current advances and perspectives[J]. Biotechnology Advances, 2019, 37(5): 599-615. |
31 | Jinghua LYU, GONG Li, CHEN Xingyue, et al. Enhancements of short-chain fatty acids production via anaerobic fermentation of waste activated sludge by the combined use of persulfate and micron-sized magnetite[J]. Bioresource Technology, 2021, 342: 126051. |
32 | EDER Ana Silvia, MAGRINI Flaviane Eva, SPENGLER Andressa, et al. Comparison of hydrogen and volatile fatty acid production by Bacillus cereus, Enterococcus faecalis and Enterobacter aerogenes singly, in co-cultures or in the bioaugmentation of microbial consortium from sugarcane vinasse[J]. Environmental Technology & Innovation, 2020, 18: 100638. |
33 | LIN Miao, FENG Limei, CHENG Zhiqiang, et al. Effect of ethanol or lactic acid on volatile fatty acid profile and microbial community in short-term sequentially transfers by ruminal fermented with wheat straw in vitro[J]. Process Biochemistry, 2021, 102: 369-375. |
34 | DEMICHELIS Francesca, PLEISSNER Daniel, FIORE Silvia, et al. Investigation of food waste valorization through sequential lactic acid fermentative production and anaerobic digestion of fermentation residues[J]. Bioresource Technology, 2017, 241: 508-516. |
35 | SHE Y C, HONG J M, ZHANG Q, et al. Revealing microbial mechanism associated with volatile fatty acids production in anaerobic acidogenesis of waste activated sludge enhanced by freezing/thawing pretreatment[J]. Bioresource Technology, 2020, 302: 122869. |
[1] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[2] | CHEN Xiangyu, BIAN Chunlin, XIAO Benyi. Research progress on temperature phased anaerobic digestion technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4872-4881. |
[3] | XI Yonglan, WANG Chengcheng, YE Xiaomei, LIU Yang, JIA Zhaoyan, CAO Chunhui, HAN Ting, ZHANG Yingpeng, TIAN Yu. Research progress on the application of micro/nano bubbles in anaerobic digestion [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4414-4423. |
[4] | LIU Yang, YE Xiaomei, MIAO Xiao, WANG Chengcheng, JIA Zhaoyan, CAO Chunhui, XI Yonglan. Pilot-scale process research on dry digestion of rural organic household waste under ammonia stress [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3847-3854. |
[5] | QIN Kai, YANG Shilin, LI Jun, CHU Zhenyu, BO Cuimei. A Kalman filter algorithm-based high precision detection method for glucoamylase biosensors [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3177-3186. |
[6] | LI Baixue, XIN Xin, ZHU Yumeng, LIU Qin, LIU Xin. Construction of sulfur autotrophic short-cut denitrification and anaerobic ammonium oxidation (SASD-A) coupling system and effect mechanisms of influent S/N ratio on denitrification process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3261-3271. |
[7] | ZHUANG Jie, XUE Jinhui, ZHAO Bincheng, ZHANG Wenyi. Organic binding mechanism of heavy metals and humus during anaerobic digestion of pig manure [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3281-3291. |
[8] | WANG Xue, XU Qiyong, ZHANG Chao. Hydrothermal carbonization of the lignocellulosic biomass and application of the hydro-char [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2536-2545. |
[9] | HUANG Yue, ZHAO Lixin, YAO Zonglu, YU Jiadong, LI Zaixing, SHEN Ruixia, AN Kemeng, HUANG Yali. Research progress in directed bioconversion of lactic acid and acetic acid from wood lignocellulosic wastes [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2691-2701. |
[10] | LI Yunchuang, XIE Fangming, XI Yanan, WAN Xinyue, SUN Yuhu, ZHAO Yongfeng, LI Gen, LIU Honghai, GAO Xionghou, LIU Hongtao. Low-cost synthesis of hydrothermally stable mesoporous aluminosilicates [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1877-1884. |
[11] | WANG Yu, YU Guangwei, JIANG Ruqing, LI Changjiang, LIN Jiajia, XING Zhenjiao. Adsorption of ciprofloxacin hydrochloride by biochar from food waste digestate residues [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2160-2170. |
[12] | FAN Sihan, YU Guoxi, LAI Chaochao, HE Huan, HUANG Bin, PAN Xuejun. Effect of abiotic modification on photochemical activity of anaerobic microbial products [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2180-2189. |
[13] | MENG Xiaoshan, TANG Zijian, CHEN Lin, HUHE Taoli, ZHOU Zhengzhong. Research progress of the early warning and regulation techniques for excessive acidification in the anaerobic digestion system [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1595-1605. |
[14] | ZHAO Xingcheng, JIA Fangxu, JIANG Weiyu, CHEN Jiayi, LIU Chenyu, YAO Hong. Redox mediators-mediated anaerobic ammonium oxidation process for biological nitrogen removal: a review [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1606-1617. |
[15] | ZHANG Chenguang, FENG Shuo, XING Yuye, SHEN Boxiong, SU Lichao. Research progress of isolated Cu2+ in copper based zeolite NH3-SCR catalyst for diesel vehicles [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1321-1331. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |