Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (7): 3780-3790.DOI: 10.16085/j.issn.1000-6613.2022-1633
• Resources and environmental engineering • Previous Articles Next Articles
YU Shan1,2(), DUAN Yuangang1,2, ZHANG Yixin2, TANG Chun1,2, FU Mengyao2, HUANG Jinyuan2, ZHOU Ying1,2()
Received:
2022-09-05
Revised:
2022-11-08
Online:
2023-08-14
Published:
2023-07-15
Contact:
YU Shan, ZHOU Ying
于姗1,2(), 段元刚1,2, 张怡欣2, 唐春1,2, 付梦瑶2, 黄靖元2, 周莹1,2()
通讯作者:
于姗,周莹
作者简介:
于姗(1986—),女,博士研究生,副教授,研究方向为天然气资源的清洁利用。E-mail:yushan@swpu.edu.cn。
基金资助:
CLC Number:
YU Shan, DUAN Yuangang, ZHANG Yixin, TANG Chun, FU Mengyao, HUANG Jinyuan, ZHOU Ying. Research progress of catalysts for two-step hydrogen sulfide decomposition to produce hydrogen and sulfur[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3780-3790.
于姗, 段元刚, 张怡欣, 唐春, 付梦瑶, 黄靖元, 周莹. 分步法分解硫化氢制氢和硫黄催化剂研究进展[J]. 化工进展, 2023, 42(7): 3780-3790.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1633
金属硫化物 | 产氢温度 /℃ | 脱硫温度 /℃ | H2S质量分数 /% | H2产率 /% | 年份 | 文献 |
---|---|---|---|---|---|---|
Li2S | 400~800 | — | 99.5 | 0~7 | 1985 | [ |
Na2S | 400~650 | — | 99.5 | 0~14 | ||
Na2S2 | 400~800 | — | 99.5 | 0~4 | ||
Na2S3 | 400~800 | — | 99.5 | 0~2 | ||
Na2S4 | 400~800 | — | 99.5 | 0~1.8 | ||
K2S | 400~700 | — | 99.5 | 0~18 | ||
K2S2 | 400~800 | — | 99.5 | 0~7.5 | ||
K2S3 | 400~800 | — | 99.5 | 0~4.5 | ||
K2S4 | 400~800 | — | 99.5 | 0~2.5 |
金属硫化物 | 产氢温度 /℃ | 脱硫温度 /℃ | H2S质量分数 /% | H2产率 /% | 年份 | 文献 |
---|---|---|---|---|---|---|
Li2S | 400~800 | — | 99.5 | 0~7 | 1985 | [ |
Na2S | 400~650 | — | 99.5 | 0~14 | ||
Na2S2 | 400~800 | — | 99.5 | 0~4 | ||
Na2S3 | 400~800 | — | 99.5 | 0~2 | ||
Na2S4 | 400~800 | — | 99.5 | 0~1.8 | ||
K2S | 400~700 | — | 99.5 | 0~18 | ||
K2S2 | 400~800 | — | 99.5 | 0~7.5 | ||
K2S3 | 400~800 | — | 99.5 | 0~4.5 | ||
K2S4 | 400~800 | — | 99.5 | 0~2.5 |
金属硫化物 | 产氢温度 /℃ | 脱硫温度 /℃ | H2S质量分数 /% | H2产率 /% | 年份 | 文献 |
---|---|---|---|---|---|---|
ZrS2 | 100~500 | 650 | 0.01 | 0~99 | 2022 | [ |
VS | 530~750 | 530~750 | 99.5 | 0~94 | 1987 | [ |
V2S3 | 500~800 | 500~800 | 99.5 | 3.9~98 | 1987 | [ |
V2S3/Al2O3 | 400~800 | 400~800 | 99.5 | 40 | 1987 | [ |
V2S3/FeS | 400~800 | 400~800 | 99.5 | 0~8 | 1987 | [ |
V2S3/Cu9S5 | 400~800 | 400~800 | 99.5 | 9~80 | 1987 | [ |
V2S3/Cu9S5/Al2O3 | 400~800 | 400~800 | 99.5 | 40 | 1987 | [ |
V2S3/ZnS | 400~800 | 400~800 | 99.5 | 0~8.5 | 1987 | [ |
5%V2S3/Al2O3 | 450~600 | 450~600 | — | 0~61 | 1990 | [ |
5%V2O5/Al2O3 | 450~600 | 450~600 | — | 0~68 | 1990 | [ |
10%V2O5/Al2O3 | 450~600 | 450~600 | — | 0~69 | 1990 | [ |
50%V2O5/Al2O3 | 450~600 | 450~600 | — | 0~66 | 1990 | [ |
Cr2S3 | 400~800 | 400~800 | 99.5 | 1.5~7.5 | 1980 | [ |
MoS2 | 400~800 | 400~800 | 99.5 | 0.5~9 | 1980 | [ |
MoS2 | 530~800 | 530~800 | 99.5 | 1.5~80 | 1987 | [ |
WS2 | 400~800 | 400~800 | 99.5 | 0.5~8.5 | 1980 | [ |
金属硫化物 | 产氢温度 /℃ | 脱硫温度 /℃ | H2S质量分数 /% | H2产率 /% | 年份 | 文献 |
---|---|---|---|---|---|---|
ZrS2 | 100~500 | 650 | 0.01 | 0~99 | 2022 | [ |
VS | 530~750 | 530~750 | 99.5 | 0~94 | 1987 | [ |
V2S3 | 500~800 | 500~800 | 99.5 | 3.9~98 | 1987 | [ |
V2S3/Al2O3 | 400~800 | 400~800 | 99.5 | 40 | 1987 | [ |
V2S3/FeS | 400~800 | 400~800 | 99.5 | 0~8 | 1987 | [ |
V2S3/Cu9S5 | 400~800 | 400~800 | 99.5 | 9~80 | 1987 | [ |
V2S3/Cu9S5/Al2O3 | 400~800 | 400~800 | 99.5 | 40 | 1987 | [ |
V2S3/ZnS | 400~800 | 400~800 | 99.5 | 0~8.5 | 1987 | [ |
5%V2S3/Al2O3 | 450~600 | 450~600 | — | 0~61 | 1990 | [ |
5%V2O5/Al2O3 | 450~600 | 450~600 | — | 0~68 | 1990 | [ |
10%V2O5/Al2O3 | 450~600 | 450~600 | — | 0~69 | 1990 | [ |
50%V2O5/Al2O3 | 450~600 | 450~600 | — | 0~66 | 1990 | [ |
Cr2S3 | 400~800 | 400~800 | 99.5 | 1.5~7.5 | 1980 | [ |
MoS2 | 400~800 | 400~800 | 99.5 | 0.5~9 | 1980 | [ |
MoS2 | 530~800 | 530~800 | 99.5 | 1.5~80 | 1987 | [ |
WS2 | 400~800 | 400~800 | 99.5 | 0.5~8.5 | 1980 | [ |
金属硫化物 | 实验温度/℃ | 脱硫温度/℃ | H2S质量分数/% | H2S转化率/% | H2产率/% | 年份 | 文献 |
---|---|---|---|---|---|---|---|
FeS | 400~800 | 400~800 | 99.5 | — | 2~8.3 | 1980 | [ |
FeS | 550~600 | 750 | — | — | 3.5~33 | 1982 | [ |
FeS | 250~590 | 600 | 1.2~19.5 | 16.3① | 34① | 2021 | [ |
FeS | 200~400 | 900 | 0.9 | 38~100 | — | 2021 | [ |
FeS2 | 400~800 | 400~800 | 99.5 | — | 0.5~8 | 1980 | [ |
Fe7S8 | 400~800 | 400~800 | 99.5 | — | 0.5~9 | 1980 | [ |
FeS/Al2O3 | 22 | 600 | 1.04 | 0~100 | — | 2021 | [ |
2%Mo-FeS | 200~400 | 900 | 0.9 | 52~100 | — | 2021 | [ |
CoS | 400~800 | 400~800 | 99.5 | — | 2.5~7 | 1980 | [ |
CoS | 20 | 600 | 7.5 | 10.6① | 26① | 2021 | [ |
CoS2 | 400~800 | 400~800 | 99.5 | — | 0.5~6.5 | 1980 | [ |
CoS1.13-1.2 | 400~800 | 400~800 | 99.5 | — | 2~7.5 | 1980 | [ |
Co9S8 | 550~850 | 850 | — | — | 0~55 | 1982 | [ |
CoS/Al2O3 | 22~150 | 600 | 0.9 | 0~100 | — | 2021 | [ |
CoMoS/Al2O3 | 21 | 600 | 1.05~19.7 | 0~100 | 0~0.6 | 2021 | [ |
NiS | 400~800 | 400~800 | 99.5 | — | 2.7~9.8 | 1980 | [ |
NiS | 20~400 | 600 | 1.2~19.5 | 2.8① | 32① | 2021 | [ |
NiS2 | 400~800 | 400~800 | 99.5 | — | 0.5~7 | 1980 | [ |
NiS1.2 | 400~800 | 400~800 | 99.5 | — | 0.3~7.6 | 1980 | [ |
Ni3S2 | 550 | 750 | — | — | 35~97 | 1982 | [ |
Ni3S2 | 300~700 | 800 | — | — | 0~50 | 1983 | [ |
Ni3S2 | 200~500 | 500~800 | 0.01 | 80 | — | 2022 | [ |
Ni3S2/MoS2 | 400~500 | 800 | — | — | 40~85 | 1982 | [ |
Ni3S2/MoS2 | 300~700 | 800 | — | — | 0~79 | 1983 | [ |
NiS/Al2O3 | 19~150 | 600 | 0.9 | 0~100 | — | 2021 | [ |
Ni3S2/Al2O3 | 300~700 | 800 | — | — | 0~82 | 1983 | [ |
Ni3S2/Al2O3 | 500~800 | 500~800 | — | — | 0~85 | 1984 | [ |
NiMoS4/Al2O3 | 22-300 | 400 | 0.9 | 0~100 | 0.3~15.7 | 2021 | [ |
金属硫化物 | 实验温度/℃ | 脱硫温度/℃ | H2S质量分数/% | H2S转化率/% | H2产率/% | 年份 | 文献 |
---|---|---|---|---|---|---|---|
FeS | 400~800 | 400~800 | 99.5 | — | 2~8.3 | 1980 | [ |
FeS | 550~600 | 750 | — | — | 3.5~33 | 1982 | [ |
FeS | 250~590 | 600 | 1.2~19.5 | 16.3① | 34① | 2021 | [ |
FeS | 200~400 | 900 | 0.9 | 38~100 | — | 2021 | [ |
FeS2 | 400~800 | 400~800 | 99.5 | — | 0.5~8 | 1980 | [ |
Fe7S8 | 400~800 | 400~800 | 99.5 | — | 0.5~9 | 1980 | [ |
FeS/Al2O3 | 22 | 600 | 1.04 | 0~100 | — | 2021 | [ |
2%Mo-FeS | 200~400 | 900 | 0.9 | 52~100 | — | 2021 | [ |
CoS | 400~800 | 400~800 | 99.5 | — | 2.5~7 | 1980 | [ |
CoS | 20 | 600 | 7.5 | 10.6① | 26① | 2021 | [ |
CoS2 | 400~800 | 400~800 | 99.5 | — | 0.5~6.5 | 1980 | [ |
CoS1.13-1.2 | 400~800 | 400~800 | 99.5 | — | 2~7.5 | 1980 | [ |
Co9S8 | 550~850 | 850 | — | — | 0~55 | 1982 | [ |
CoS/Al2O3 | 22~150 | 600 | 0.9 | 0~100 | — | 2021 | [ |
CoMoS/Al2O3 | 21 | 600 | 1.05~19.7 | 0~100 | 0~0.6 | 2021 | [ |
NiS | 400~800 | 400~800 | 99.5 | — | 2.7~9.8 | 1980 | [ |
NiS | 20~400 | 600 | 1.2~19.5 | 2.8① | 32① | 2021 | [ |
NiS2 | 400~800 | 400~800 | 99.5 | — | 0.5~7 | 1980 | [ |
NiS1.2 | 400~800 | 400~800 | 99.5 | — | 0.3~7.6 | 1980 | [ |
Ni3S2 | 550 | 750 | — | — | 35~97 | 1982 | [ |
Ni3S2 | 300~700 | 800 | — | — | 0~50 | 1983 | [ |
Ni3S2 | 200~500 | 500~800 | 0.01 | 80 | — | 2022 | [ |
Ni3S2/MoS2 | 400~500 | 800 | — | — | 40~85 | 1982 | [ |
Ni3S2/MoS2 | 300~700 | 800 | — | — | 0~79 | 1983 | [ |
NiS/Al2O3 | 19~150 | 600 | 0.9 | 0~100 | — | 2021 | [ |
Ni3S2/Al2O3 | 300~700 | 800 | — | — | 0~82 | 1983 | [ |
Ni3S2/Al2O3 | 500~800 | 500~800 | — | — | 0~85 | 1984 | [ |
NiMoS4/Al2O3 | 22-300 | 400 | 0.9 | 0~100 | 0.3~15.7 | 2021 | [ |
金属硫化物 | 产氢温度 /℃ | 脱硫温度 /℃ | H2S质量分数 /% | H2产率 /% | 年份 | 文献 |
---|---|---|---|---|---|---|
Cu2S | 400~800 | 400~800 | 99.5 | 6.9 | 1980 | [ |
Cu9S5 | 400~800 | 400~800 | 99.5 | 6.7 | 1980 | [ |
CuS | 400~800 | 400~800 | 99.5 | 6.5 | 1980 | [ |
金属硫化物 | 产氢温度 /℃ | 脱硫温度 /℃ | H2S质量分数 /% | H2产率 /% | 年份 | 文献 |
---|---|---|---|---|---|---|
Cu2S | 400~800 | 400~800 | 99.5 | 6.9 | 1980 | [ |
Cu9S5 | 400~800 | 400~800 | 99.5 | 6.7 | 1980 | [ |
CuS | 400~800 | 400~800 | 99.5 | 6.5 | 1980 | [ |
金属 | 产氢温度/℃ | 脱硫温度/℃ | H2产率/% | 年份 | 文献 |
---|---|---|---|---|---|
Cu | 250~550 | — | — | 1991 | [ |
Ag | 500~700 | — | 0~56 | 1982 | [ |
Pb | 600 | — | — | 1982 | [ |
Bi | 271 | 927 | 47.3 | 1975 | [ |
金属 | 产氢温度/℃ | 脱硫温度/℃ | H2产率/% | 年份 | 文献 |
---|---|---|---|---|---|
Cu | 250~550 | — | — | 1991 | [ |
Ag | 500~700 | — | 0~56 | 1982 | [ |
Pb | 600 | — | — | 1982 | [ |
Bi | 271 | 927 | 47.3 | 1975 | [ |
1 | 王震, 孔盈皓, 李伟. “碳中和”背景下中国天然气产业发展综述[J]. 天然气工业, 2021, 41(8): 194-202. |
WANG Zhen, KONG Yinghao, LI Wei. Review on the development of China’s natural gas industry in the background of “carbon neutrality”[J]. Natural Gas Industry, 2021, 41(8): 194-202. | |
2 | 张超, 宋鹏飞, 侯建国, 等. 碳中和进程中天然气与氢能产业深度融合的新发展模式探讨[J]. 现代化工, 2022, 42(9): 7-12. |
ZHANG Chao, SONG Pengfei, HOU Jianguo, et al. A new development mode for deep integration between natural gas and hydrogen energy industries in carbon neutralization progress[J]. Modern Chemical Industry, 2022, 42(9): 7-12. | |
3 | 周淑慧, 孙慧, 梁严, 等. “双碳”目标下“十四五”天然气发展机遇与挑战[J]. 油气与新能源, 2021, 33(3): 27-36. |
ZHOU Shuhui, SUN Hui, LIANG Yan, et al. Carbon neutrality oriented 14th Five-Year opportunities and challenges of natural gas development[J]. Petroleum and New Energy, 2021, 33(3): 27-36. | |
4 | 周淑慧, 王军, 梁严. 碳中和背景下中国“十四五”天然气行业发展[J]. 天然气工业, 2021, 41(2): 171-182. |
ZHOU Shuhui, WANG Jun, LIANG Yan. Development of China’s natural gas industry during the 14th Five-Year Plan in the background of carbon neutrality[J]. Natural Gas Industry, 2021, 41(2): 171-182. | |
5 | 吴亚军, 王宁, 张广东, 等. 高含硫气藏单质硫溶解度测试方法及预测模型[J]. 特种油气藏, 2022, 29(2): 104-109. |
WU Yajun, WANG Ning, ZHANG Guangdong, et al. Testing method and prediction model of elemental sulfur solubility in sour gas reservoirs[J]. Special Oil & Gas Reservoirs, 2022, 29(2): 104-109. | |
6 | ZHANG Xin, TANG Yuyin, QU Siqiu, et al. H2S-selective catalytic oxidation: Catalysts and processes[J]. ACS catalysis, 2015, 5(2): 1053-1067. |
7 | MONNERY W D, SVRCEK W Y, BEHIE L A. Modelling the modified Claus process reaction furnace and the implications on plant design and recovery[J]. The Canadian Journal of Chemical Engineering, 1993, 71(5): 711-724. |
8 | PIÉPLU A, SAUR O, LAVALLEY J C, et al. Claus catalysis and H2S selective oxidation[J]. Catalysis Reviews, 1998, 40(4): 409-450. |
9 | 段超, 唐春, 吴梦南, 等. 电催化分解硫化氢制氢脱硫研究进展[J]. 天然气化工(C1化学与化工), 2021, 46(S1): 24-30. |
DUAN Chao, TANG Chun, WU Mengnan, et al. Progress in electrocatalytic decomposition of hydrogen sulfide to hydrogen and sulfur[J]. Natural Gas Chemical Industry, 2021, 46(S1): 24-30. | |
10 | RUBAN P, SELLAPPA K. Concurrent hydrogen production and hydrogen sulfide decomposition by solar photocatalysis[J]. Clean: Soil, Air, Water, 2016, 44(8): 1023-1035. |
11 | KHANCHANDANI S, KUMAR S, GANGULI A K. Comparative study of TiO2/CuS core/shell and composite nanostructures for efficient visible light photocatalysis[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1487-1499. |
12 | DAN Meng, YU Shan, LI Yi, et al. Hydrogen sulfide conversion: how to capture hydrogen and sulfur by photocatalysis[J]. Journal of Photochemistry Photobiology C: Photochemistry Reviews, 2020, 42: 100339. |
13 | PORTELA R, SUÁREZ S, RASMUSSEN S B, et al. Photocatalytic-based strategies for H2S elimination[J]. Catalysis Today, 2010, 151(1/2): 64-70. |
14 | NAVAKOTESWARA RAO V, LAKSHMANA REDDY N, MAMATHA KUMARI M, et al. Photocatalytic recovery of H2 from H2S containing wastewater: Surface and interface control of photo-excitons in Cu2S@TiO2 core-shell nanostructures[J]. Applied Catalysis B: Environmental, 2019, 254: 174-185. |
15 | 张婧, 张铁, 孙峰, 等. 硫化氢直接分解制取氢气和硫黄研究进展[J]. 化工进展, 2017, 36(4): 1448-1459. |
ZHANG Jing, ZHANG Tie, SUN Feng, et al. Research progress on hydrogen and sulfur production from direct decomposition of hydrogen sulfide[J]. Chemical Industry and Engineering Progress, 2017, 36(4): 1448-1459. | |
16 | MATROS Y S, NOSKOV A S, ZAGDRUIKO A N, et al. Comparison of technological design of the catalytic processes under unsteady-state conditions[J]. Theoretical Foundations of Chemical Engineering, 1994, 28(2): 120-125. |
17 | MATROS Y S. Performance of catalytic processes under unsteady conditions[J]. Chemical Engineering Science, 1990, 45(8): 2097-2102. |
18 | ZAGORUIKO A N, BOBROVA L, VERNIKOVSKAYA N, et al. Unsteady-state operation of reactors with fixed catalyst beds[J]. Reviews in Chemical Engineering, 2021, 37(1): 193-225. |
19 | ZAGORUIKO A. Low-temperature chemisorption-enhanced catalytic decomposition of hydrogen sulfide: Thermodynamic analysis and process concept[J]. Catalysis Today, 2019, 329: 171-176. |
20 | BANDERMANN F, HARDER K. Production of H2 via thermal decomposition of H2S and separation of H2 and H2S by pressure swing adsorption[J]. International Journal of Hydrogen Energy, 1982, 7(6): 471-475. |
21 | FUKUDA K, DOKIYA M, KAMEYAMA T, et al. Catalytic decomposition of hydrogen sulfide[J]. Industrial & Engineering Chemistry Fundamentals, 1978, 17(4): 243-248. |
22 | JEMNI A. Study of two-dimensional heat and mass transfer during absorption in a metal-hydrogen reactor[J]. International Journal of Hydrogen Energy, 1995, 20(1): 43-52. |
23 | KAMEYAMA T, DOKIYA M, FUKUDA K, et al. Differential permeation of hydrogen sulfide through a microporous vycor-type glass membrane in the separation system of hydrogen and hydrogen sulfide[J]. Separation Science and Technology, 1979, 14(10): 953-957. |
24 | SADRZADEH M, MOHAMMADI T, IVAKPOUR J, et al. Separation of lead ions from wastewater using electrodialysis: Comparing mathematical and neural network modeling[J]. Chemical Engineering Journal, 2008, 144(3): 431-441. |
25 | SUNLEY G J, WATSON D J. High productivity methanol carbonylation catalysis using iridium: The CativaTM process for the manufacture of acetic acid[J]. Catalysis Today, 2000, 58(4): 293-307. |
26 | ZAMAN J, CHAKMA A. A simulation study on the thermal decomposition of hydrogen sulfide in a membrane reactor[J]. International Journal of Hydrogen Energy, 1995, 20(1): 21-28. |
27 | ADANEZ J, ABAD A, GARCIA-LABIANO F, et al. Progress in chemical-looping combustion and reforming technologies[J]. Progress in Energy and Combustion Science, 2012, 38(2): 215-282. |
28 | TANG Mingchen, XU Long, FAN Maohong. Progress in oxygen carrier development of methane-based chemical-looping reforming: A review[J]. Applied Energy, 2015, 151: 143-156. |
29 | CHEN Liangyong, BAO Jinhua, KONG Liang, et al. The direct solid-solid reaction between coal char and iron-based oxygen carrier and its contribution to solid-fueled chemical looping combustion[J]. Applied Energy, 2016, 184: 9-18. |
30 | ZENG Liang, CHENG Zhuo, FAN J A, et al. Metal oxide redox chemistry for chemical looping processes[J]. Nature Reviews Chemistry, 2018, 2(11): 349-364. |
31 | ZHU Xing, ZHANG Mingyue, LI Kongzhai, et al. Chemical-looping water splitting over ceria-modified iron oxide: Performance evolution and element migration during redox cycling[J]. Chemical Engineering Science, 2018, 179: 92-103. |
32 | 杨杰, 常辉, 隋志军, 等. 化学链催化甲烷氧化反应研究进展[J]. 化工进展, 2021, 40(4): 1928-1947. |
YANG Jie, CHANG Hui, SUI Zhijun, et al. Advances in chemical looping methane oxidation[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1928-1947. | |
33 | GOGOLEV I, PIKKARAINEN T, KAUPPINEN J, et al. Investigation of biomass alkali release in a dual circulating fluidized bed chemical looping combustion system[J]. Fuel, 2021, 297: 120743. |
34 | 周怀荣, 马迎文, 王可, 等. 化学链空分联合化学链制氢的煤制甲醇过程参数优化与分析[J]. 化工进展, 2022, 41(10): 5332-5341. |
ZHOU Huairong, MA Yingwen, WANG Ke, et al. Optimization and analysis of coal-to-methanol process by integrating chemical looping air separation and hydrogen technology[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5332-5341. | |
35 | CHIVERS T, HYNE J B, LAU C. The thermal decomposition of hydrogen sulfide over transition metal sulfides[J]. International Journal of Hydrogen Energy, 1980, 5(5): 499-506. |
36 | KIUCHI H, NAKAMURA T, FUNAKI K, et al. Recovery of hydrogen from hydrogen sulfide with metals or metal sulfides[J]. International Journal of Hydrogen Energy, 1982, 7(6): 477-482. |
37 | ZAGORUIKO A, MIKENIN P. Decomposition of hydrogen sulfide into elements in the cyclic chemisorption-catalytic regime[J]. Catalysis Today, 2021, 378: 176-188. |
38 | WEINER J G, LEGGETT C W. Process for production of hydrogen and sulfur: US2979384A[P]. 1961-04-11. |
39 | CHIVERS T, LAU C. The thermal decomposition of hydrogen sulfide over alkali metal sulfides and polysulfides[J]. International Journal of Hydrogen Energy, 1985, 10(1): 21-25. |
40 | CHIVERS T, LAU C. The thermal decomposition of hydrogen sulfide over vanadium and molybdenum sulfides and mixed sulfide catalysts in quartz and thermal diffusion column reactors[J]. International Journal of Hydrogen Energy, 1987, 12(4): 235-243. |
41 | AL-SHAMMA L M, NAMAN S A. Kinetic study for thermal production of hydrogen from H2S by heterogeneous catalysis of vanadium sulfide in a flow system[J]. International Journal of Hydrogen Energy, 1989, 14(3): 173-179. |
42 | AL-SHAMMA L M, NAMAN S A. The production and separation of hydrogen and sulfur from thermal decomposition of hydrogen sulfide over vanadium oxide/sulfide catalysts[J]. International Journal of Hydrogen Energy, 1990, 15(1): 1-5. |
43 | KIUCHI H, FUNAKI K, NAKAI Y, et al. Thermochemical decomposition cycle of H2S with nickel sulfide[J]. International Journal of Hydrogen Energy, 1984, 9(8): 701-705. |
44 | KIUCHI H, FUNAKI K, TANAKA T. Thermochemical decomposition of hydrogen sulfide with nickel sulfide[J]. Metallurgical Transactions B, 1983, 14(3): 347-352. |
45 | REDDY S, NADGOUDA S G, TONG A, et al. Metal sulfide-based process analysis for hydrogen generation from hydrogen sulfide conversion[J]. International Journal of Hydrogen Energy, 2019, 44(39): 21336-21350. |
46 | JANGAM K, CHEN Y Y, QIN Lang, et al. Mo-doped FeS mediated H2 production from H2S via an in situ cyclic sulfur looping scheme[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(33): 11204-11211. |
47 | OSASUYI O, QUANG D V, BASINA G, et al. Reversible metal sulfide transition in a two-step thermochemical H2S splitting[J]. Industrial & Engineering Chemistry Research, 2022, 61(18): 6135-6145. |
48 | CHEN Qiyuan, LI Lili, HEPLER L G. Kinetics of desulfurization of hydrogen sulfide using metallic copper as a desulfurizer[J]. The Canadian Journal of Chemical Engineering, 1991, 69(5): 1160-1165. |
49 | SOLIMAN M A, CARTY R H, CONGER W L, et al. New thermochemical cycles for hydrogen production[J]. The Canadian Journal of Chemical Engineering, 1975, 53(2): 164-169. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | YANG Jianping. PSE for feedstock consumption reduction in reaction system of HPPO plant [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 21-32. |
[8] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[9] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[10] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[11] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[12] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[13] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[14] | SHI Keke, LIU Muzi, ZHAO Qiang, LI Jinping, LIU Guang. Properties and research progress of magnesium based hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4731-4745. |
[15] | LIU Muzi, SHI Keke, ZHAO Qiang, LI Jinping, LIU Guang. Research progress of solid hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4746-4769. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |