Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (7): 3791-3801.DOI: 10.16085/j.issn.1000-6613.2022-1659
• Resources and environmental engineering • Previous Articles Next Articles
YAO Liming1,2,3(), WANG Yazhuo2,3, FAN Honggang2,3, GU Qing2,3, YUAN Haoran2,3(), CHEN Yong1,2,3
Received:
2022-09-08
Revised:
2022-10-19
Online:
2023-08-14
Published:
2023-07-15
Contact:
YUAN Haoran
姚丽铭1,2,3(), 王亚琢2,3, 范洪刚2,3, 顾菁2,3, 袁浩然2,3(), 陈勇1,2,3
通讯作者:
袁浩然
作者简介:
姚丽铭(1999—),女,硕士研究生,研究方向为有机固废热解。E-mail:lydia.yao@qq.com。
基金资助:
CLC Number:
YAO Liming, WANG Yazhuo, FAN Honggang, GU Qing, YUAN Haoran, CHEN Yong. Treatment status of kitchen waste and its research progress of pyrolysis technology[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3791-3801.
姚丽铭, 王亚琢, 范洪刚, 顾菁, 袁浩然, 陈勇. 餐厨垃圾处理现状及其热解技术研究进展[J]. 化工进展, 2023, 42(7): 3791-3801.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1659
1 | HAFID Halimatun Saadiah, RAHMAN Nor’ Aini Abdul, SHAH Umi Kalsom Md, et al. Feasibility of using kitchen waste as future substrate for bioethanol production: A review[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 671-686. |
2 | 易志刚. 餐厨垃圾收运与资源化利用研究进展[J]. 中国资源综合利用, 2021, 39(12): 116-119, 125. |
YI Zhigang. Research progress on the collection, transportation and resource utilization of kitchen waste[J]. China Resources Comprehensive Utilization, 2021, 39(12): 116-119, 125. | |
3 | GIWA Abdulmoseen Segun, XU Heng, CHANG Fengmin, et al. Pyrolysis coupled anaerobic digestion process for food waste and recalcitrant residues: Fundamentals, challenges, and considerations[J]. Energy Science & Engineering, 2019, 7(6): 2250-2264. |
4 | DIGGELMAN Carol, Robert K HAM. Household food waste to wastewater or to solid waste? That is the question[J]. Waste Management & Research, 2003, 21(6): 501-514. |
5 | 何品晶. 农村生活垃圾处理的目标、原则和评价方法浅议[J]. 环境卫生工程, 2018, 26(1): 52-55. |
HE Pinjing. Target, principle and assessment method of waste treatment in small towns and rural area[J]. Environmental Sanitation Engineering, 2018, 26(1): 52-55. | |
6 | 杨小云, 贾悦, 钟洁, 等. 上海市生活垃圾强制分类对收运体系的初步影响及建议[J]. 环境卫生工程, 2021, 29(6): 67-70, 81. |
YANG Xiaoyun, JIA Yue, ZHONG Jie, et al. The preliminary impact and suggestion on the collection and transportation system of MSW compulsory classification in Shanghai[J]. Environmental Sanitation Engineering, 2021, 29(6): 67-70, 81. | |
7 | 雷永康, 熊春江, 姜苏峻, 等. 典型餐厨垃圾预处理效果比较[J]. 环境卫生工程, 2017, 25(4): 54-57. |
LEI Yongkang, XIONG Chunjiang, JIANG Sujun, et al. Comparison of pretreatment effect on typical food waste[J]. Environmental Sanitation Engineering, 2017, 25(4): 54-57. | |
8 | 宫克勤, 李才, 张绍军, 等. 浅谈餐厨垃圾以及常规处理工艺[J]. 广东化工, 2019, 46(19): 158-159, 152. |
GONG Keqin, LI Cai, ZHANG Shaojun, et al. Discussion on food waste and conventional treatment process[J]. Guangdong Chemical Industry, 2019, 46(19): 158-159, 152. | |
9 | 史红钻. 简述餐厨垃圾资源化利用的预处理系统[J]. 资源节约与环保, 2013(7): 255-256. |
SHI Hongzuan. Brief introduction of pretreatment system for resource utilization of kitchen waste[J]. Resources Economization & Environmental Protection, 2013(7): 255-256. | |
10 | 唐欣, 薛方亮, Doda ADA, 等. 预处理技术对餐厨垃圾厌氧发酵的影响[J]. 环境工程, 2017, 35(S2): 289-292, 296. |
TANG Xin, XUE Fangliang, Doda ADA, et al. Effects of the pretreatment technology on the anaerobic digestion of food waste[J]. Environmental Engineering, 2017, 35(S2): 289-292, 296. | |
11 | 张军, 周凯, 聂永山. 快速好氧堆肥工艺在餐厨垃圾处理中的应用[J]. 现代化工, 2022, 42(2): 6-9. |
ZHANG Jun, ZHOU Kai, NIE Yongshan. Application of rapid aerobic composting process in kitchen waste treatment[J]. Modern Chemical Industry, 2022, 42(2): 6-9. | |
12 | 李北, 徐永安, 杨巍. 餐厨废弃油脂回收利用及运行模式探讨[J]. 中国油脂, 2013, 38(3): 58-60. |
LI Bei, XU Yongan, YANG Wei. Discussion on recycling and operation mode of kitchen waste oil[J]. China Oils and Fats, 2013, 38(3): 58-60. | |
13 | 曹泳民. 餐厨废弃物油脂回收提纯技术研究及应用[J]. 广东化工, 2020, 47(9): 68-70. |
CAO Yongmin. Research and application of oil recovery and purification technology from kitchen waste[J]. Guangdong Chemical Industry, 2020, 47(9): 68-70. | |
14 | 孙旭东, 白光建, 公丕玉, 等. 餐厨垃圾粗油脂精炼及油品提升技术攻关[R]. 山东: 中节能 (2018-01-28) [2022-10-19] https://kns.cnki.net/KCMS/detail/detail.aspx? dbname=SNAD&filename=SNAD000001826118. |
15 | 胡鑫鑫. 杭州市餐厨垃圾预处理技术的应用[J]. 环境卫生工程, 2018, 26(3): 8-10. |
HU Xinxin. Application on pretreatment technology of food waste in Hangzhou[J]. Environmental Sanitation Engineering, 2018, 26(3): 8-10. | |
16 | 林仞. 城镇规模化餐厨垃圾预处理设备的研究[J]. 科学技术创新, 2021(22): 184-186. |
LIN Ren. Study on pretreatment equipment of larg-scale kitchen waste in cities and towns[J]. Scientific and Technological Innovation, 2021(22): 184-186. | |
17 | 景欢, 潘宁宁, 李美婷, 等. 家庭餐厨废油脂回收制肥皂研究[J]. 辽宁科技学院学报, 2020, 22(3): 20-22. |
JING Huan, PAN Ningning, LI Meiting, et al. Study on production of soap by recovered household waste cooking oil[J]. Journal of Liaoning Institute of Science and Technology, 2020, 22(3): 20-22. | |
18 | 乔子茹, 魏华炜, 马佳莹, 等. 餐厨垃圾生物处理过程中VOCs的产生与控制研究进展[J]. 应用与环境生物学报, 2020, 26(1): 210-216. |
QIAO Ziru, WEI Huawei, MA Jiaying, et al. Review of the generation of volatile organic compounds during the bio-treatment process of food waste[J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(1): 210-216. | |
19 | QASIM M, XIAO H, HE K, et al. Impact of landfill garbage on insect ecology and human health[J]. Acta Tropica, 2020, 211: 105630. |
20 | WANG Ning, TAN Li, XIE Lianke, et al. Investigation of volatile methyl siloxanes in biogas and the ambient environment in a landfill[J]. Journal of Environmental Sciences, 2020, 91: 54-61. |
21 | KHAN Moonis Ali, HAMEED Bassim H, SIDDIQUI Masoom Raza, et al. Comparative investigation of the physicochemical properties of chars produced by hydrothermal carbonization, pyrolysis, and microwave-induced pyrolysis of food waste[J]. Polymers, 2022, 14(4): 821. |
22 | 梅冰, 窦法楷, 汪慧莲, 等. 餐厨垃圾处理技术研究进展[J]. 环境卫生工程, 2015, 23(5): 17-18. |
MEI Bing, DOU Fakai, WANG Huilian, et al. Research progress of food waste treatment technology[J]. Environmental Sanitation Engineering, 2015, 23(5): 17-18. | |
23 | 许晓杰, 冯向鹏, 李冀闽, 等. 国内外餐厨垃圾处理现状及技术[J]. 环境卫生工程, 2014, 22(3): 31-33. |
XU Xiaojie, FENG Xiangpeng, LI Jimin, et al. Situation and technologies of food waste treatment at domestic and abroad[J]. Environmental Sanitation Engineering, 2014, 22(3): 31-33. | |
24 | LEE Suk Hui, CHOI Ki In, OSAKO Masahiro, et al. Evaluation of environmental burdens caused by changes of food waste management systems in Seoul, Korea[J]. Science of the Total Environment, 2007, 387(1/2/3): 42-53. |
25 | 国家数据网. 城市生活垃圾清运和处理情况[R]. (2020) [2022-03-10] https://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0C06&sj=2021 |
26 | 韩雯雯, 滕少香. 垃圾焚烧处理技术的现状及发展趋势[J]. 中国资源综合利用, 2017, 35(6): 43-45. |
HAN Wenwen, TENG Shaoxiang. Present situation and development trend of waste incineration technology[J]. China Resources Comprehensive Utilization, 2017, 35(6): 43-45. | |
27 | 程伟, 鞠阿莲. 日本生活垃圾焚烧处理现状及启示[J]. 环境卫生工程, 2019, 27(6): 57-60. |
CHENG Wei, JU Alian. Current situation and enlightenment on incineration treatment of domestic waste in Japan[J]. Environmental Sanitation Engineering, 2019, 27(6): 57-60. | |
28 | BADGETT Alex, MILBRANDT Anelia. Food waste disposal and utilization in the United States: A spatial cost benefit analysis[J]. Journal of Cleaner Production, 2021, 314: 128057. |
29 | 符鑫杰, 李涛, 班允鹏, 等. 垃圾焚烧技术发展综述[J]. 中国环保产业, 2018(8): 56-59. |
FU Xinjie, LI Tao, BAN Yunpeng, et al. Overview on technical development of refuse incineration[J]. China Environmental Protection Industry, 2018(8): 56-59. | |
30 | 阚慧, 孙翔, 肖芸, 等. 基于好氧堆肥的餐厨垃圾肥料化利用污染分析及控制策略[J]. 环境工程, 2014, 32(1): 97-101. |
KAN Hui, SUN Xiang, XIAO Yun, et al. Analysis and strategic control on pollution in the process of food waste aerobic composting[J]. Environmental Engineering, 2014, 32(1): 97-101. | |
31 | 展争艳, 顾生芳, 展成业, 等. 餐厨垃圾制备有机肥生产工艺探析[J]. 广东化工, 2022, 49(4): 126-128. |
ZHAN Zhengyan, GU Shengfang, ZHAN Chengye, et al. Study on the production technology of organic fertilizer from kitchen waste[J]. Guangdong Chemical Industry, 2022, 49(4): 126-128. | |
32 | 李江东. 餐厨垃圾好氧堆肥资源化利用及无害化处理的研究[D]. 南昌: 南昌大学, 2021. |
LI Jiangdong. Research on resource utilization and harmless treatment of food waste[D]. Nanchang: Nanchang University, 2021. | |
33 | 王发生. 餐厨垃圾固相物好氧堆肥工艺设计[J]. 甘肃科技纵横, 2021, 50(1): 20-22. |
WANG Fasheng. Design of aerobic composting process for solid phase of food waste[J]. Scientific & Technical Information of Gansu, 2021, 50(1): 20-22. | |
34 | 韩涛, 任连海. 餐厨垃圾好氧堆肥工艺条件优化[J]. 环境卫生工程, 2007, 15(6): 28-29, 33. |
HAN Tao, REN Lianhai. Technological conditions optimization of food residue aerobic composting[J]. Environmental Sanitation Engineering, 2007, 15(6): 28-29, 33. | |
35 | LEE Ye Eun, SHIN Dong Chul, JEONG Yoonah, et al. Effects of pyrolysis temperature and retention time on fuel characteristics of food waste feedstuff and compost for co-firing in coal power plants[J]. Energies, 2019, 12(23): 4538. |
36 | 郭伟, 张盼盼. 餐厨垃圾回收利用管理——日本经验及借鉴[J]. 天津城建大学学报, 2017, 23(3): 214-219. |
GUO Wei, ZHANG Panpan. Food waste recovery and utilization management: Japanese experiences and its enlightenment for China[J]. Journal of Tianjin Chengjian University, 2017, 23(3): 214-219. | |
37 | LEE Ye Eun, Jun Ho JO, KIM I Tae, et al. Value-added performance and thermal decomposition characteristics of dumped food waste compost by pyrolysis[J]. Energies, 2018, 11(5): 1061. |
38 | 周营. 餐厨垃圾好氧堆肥微生物强化及复混肥制备的研究[D]. 广州: 华南理工大学, 2018. |
ZHOU Ying. Study on the microorganism enhancement and organic-inorganic compound fertilizer of food waste composting[D]. Guangzhou: South China University of Technology, 2018. | |
39 | 毕珠洁, 邰俊, 许碧君. 中国餐厨垃圾管理现状研究[J]. 环境工程, 2016, 34(S1): 765-768. |
BI Zhujie, TAI Jun, XU Bijun. The current food waste management situation in China[J]. Environmental Engineering, 2016, 34(S1): 765-768. | |
40 | 张黎阳. 餐厨垃圾厌氧消化后沼渣的好氧堆肥优化研究[D]. 杭州: 浙江大学, 2020. |
ZHANG Liyang. Study on optimization of compost of food waste anaerobic digestion residue[D]. Hangzhou: Zhejiang University, 2020. | |
41 | 宋景辉. 不同生物炭对餐厨垃圾厌氧发酵的影响及经济效益分析[D]. 杨凌: 西北农林科技大学, 2021. |
SONG Jinghui. Effects of different biochar on anaerobic digestion of food waste and analysis of economic benefits[D]. Yangling: Northwest A & F University, 2021. | |
42 | 胡致远, 张新杰, 王宇, 等. 生物强化菌系添加量对不同食微比餐厨垃圾厌氧发酵性能影响[J]. 新能源进展, 2021, 9(6): 489-495. |
HU Zhiyuan, ZHANG Xinjie, WANG Yu, et al. Effect of bioaugmentation on anaerobic digestion of food waste at different food to micro ratios[J]. Advances in New and Renewable Energy, 2021, 9(6): 489-495. | |
43 | 崔文静, 陆敏博. 餐厨垃圾处理现状及今后发展趋势[J]. 广东化工, 2021, 48(19): 140-141. |
CUI Wenjing, LU Minbo. The present disposing situation and development trend of kitchen waste[J]. Guangdong Chemical Industry, 2021, 48(19): 140-141. | |
44 | 炊春萌, 李保国, 刘莉, 等. 餐厨垃圾厌氧发酵研究进展[J]. 食品与发酵科技, 2020, 56(4): 60-64, 112. |
CHUI Chunmeng, LI Baoguo, LIU Li, et al. Advances in anaerobic fermentation of kitchen waste[J]. Food and Fermentation Sciences & Technology, 2020, 56(4): 60-64, 112. | |
45 | 陈林艺. 餐厨垃圾厌氧消化热碱预处理技术研究[D]. 广州: 华南理工大学, 2020. |
CHEN Linyi. Study on thermal and alkali pretreatment of anaerobic digestion of food waste[D]. Guangzhou: South China University of Technology, 2020. | |
46 | 程亚莉, 毕桂灿, 沃德芳, 等. 国内外餐厨垃圾现状及其处理措施[J]. 新能源进展, 2017, 5(4): 266-271. |
CHENG Yali, BI Guican, Defang WO, et al. Status quo of kitchen waste and its treatment measures at home and abroad[J]. Advances in New and Renewable Energy, 2017, 5(4): 266-271. | |
47 | 涂卫峰. 生物垃圾厌氧发酵的原理研究[D]. 合肥: 合肥工业大学, 2006. |
TU Weifeng. Biological waste anaerobic fermentation theory research[D]. Hefei: Hefei University of Technology, 2006. | |
48 | OPATOKUN Suraj Adebayo, STREZOV Vladimir, KAN Tao. Product based evaluation of pyrolysis of food waste and its digestate[J]. Energy, 2015, 92: 349-354. |
49 | 马磊, 刘肃, 宣晓英. 城市餐厨垃圾资源化处理技术综述[J]. 城市管理与科技, 2013, 15(2): 62-63. |
MA Lei, LIU Su, XUAN Xiaoying. Summary of resource treatment technology of urban kitchen waste[J]. Urban Management Science & Technology, 2013, 15(2): 62-63. | |
50 | 钱鹏, 汪华林, 王剑刚. 餐厨垃圾的混速热解实验研究[J]. 太原理工大学学报, 2010, 41(5): 508-511. |
QIAN Peng, WANG Hualin, WANG Jiangang. Research on multi-rate pyrolysis of kitchen residue[J]. Journal of Taiyuan University of Technology, 2010, 41(5): 508-511. | |
51 | Jun-Ho JO, KIM Seung-Soo, SHIM Jae-work, et al. Pyrolysis characteristics and kinetics of food wastes[J]. Energies, 2017,10: 1191. |
52 | KAMINSKY Walter. Chemical recycling of plastics by fluidized bed pyrolysis[J]. Fuel Communications, 2021, 8: 100023. |
53 | 孔晶, 李宣, 陈正件, 等. 垃圾处理及其热解气化技术应用现状[J]. 当代化工研究, 2021(22): 107-109. |
KONG Jing, LI Xuan, CHEN Zhengjian, et al. Current status of municipal solid waste treatment and pyrolysis gasification technology application[J]. Modern Chemical Research, 2021(22): 107-109. | |
54 | 李水清, 姚强, 池涌, 等. 废轮胎小型和中试规模热解研究的实验方法[J]. 燃烧科学与技术, 2004, 10(1): 42-50. |
LI Shuiqing, YAO Qiang, CHI Yong, et al. Principle and practice of scrap tyre pyrolysis: Lab-scale and pilot-scale studies[J]. Journal of Combustion Science and Technology, 2004, 10(1): 42-50. | |
55 | KLOSE Wolfgang, WIEST Wolfgang. Experiments and mathematical modeling of maize pyrolysis in a rotary kiln[J]. Fuel, 1999, 78(1): 65-72. |
56 | 王越. 生活垃圾热解气化技术应用现状及发展前景[J]. 科技创新导报, 2019, 16(35): 84-85. |
WANG Yue. Application status and development prospect of domestic waste pyrolysis and gasification technology[J]. Science and Technology Innovation Herald, 2019, 16(35): 84-85. | |
57 | 黄博. 餐厨垃圾分选有机废物热解特性及示范工程研究[D]. 北京: 北京化工大学, 2017. |
HUANG Bo. Study on pyrolysis characteristics and demonstration project of the organic waste sorted from food waste[D]. Beijing: Beijing University of Chemical Technology, 2017. | |
58 | OPATOKUN Suraj Adebayo, KAN Tao, SHOAIBI Ahmed Al, et al. Characterization of food waste and its digestate as feedstock for thermochemical processing[J]. Energy & Fuels, 2016, 30(3): 1589-1597. |
59 | SURIAPPARAO Dadi V, VINU R. Recovery of renewable carbon resources from the household kitchen waste via char induced microwave pyrolysis[J]. Renewable Energy, 2021, 179: 370-378. |
60 | 李文, 魏晴, 马宁宁, 等. 校园餐厨垃圾组成及热解特性分析[J]. 甘肃科技, 2017, 33(13): 65-67. |
LI Wen, WEI Qing, MA Ningning, et al. Analysis of composition and pyrolysis characteristics of campus kitchen waste[J]. Gansu Science and Technology, 2017, 33(13): 65-67. | |
61 | 徐帆帆. 城市生活垃圾典型组分分级热解气化研究[D]. 东营: 中国石油大学(华东), 2019. |
XU Fanfan. The hierarchical pyrolysis and gasification study of typical municipal solid waste components[D]. Dongying: China University of Petroleum (Huadong), 2019. | |
62 | ELKHALIFA Samar, Tareq AL-ANSARI, MACKEY Hamish R, et al. Food waste to biochars through pyrolysis: A review[J]. Resources, Conservation and Recycling, 2019, 144: 310-320. |
63 | 李爱民, 李延吉. 固体废物在固定床式热解炉内热解产气特性的实验研究[J]. 环境污染治理技术与设备, 2003(4): 4-10. |
LI Aimin, LI Yanji. Experimental study on pyrolysis gas characteristics of solid wastes in fixed pyrolyzer[J]. Techniques and Equipment for Environmental Pollution Control, 2003(4): 4-10. | |
64 | 黄云龙, 郭庆杰, 田红景, 等. 餐厨垃圾热解实验研究[J]. 高校化学工程学报, 2012, 26(4): 721-728. |
HUANG Yunlong, GUO Qingjie, TIAN Hongjing, et al. Study on pyrolysis of kitchen waste (KW) by using thermo gravimetric analyzer (TGA) and tube furnace[J]. Journal of Chemical Engineering of Chinese Universities, 2012, 26(4): 721-728. | |
65 | MING Xue, XU Fanfan, JIANG Yuan, et al. Thermal degradation of food waste by TG-FTIR and Py-GC/MS: Pyrolysis behaviors, products, kinetic and thermodynamic analysis[J]. Journal of Cleaner Production, 2020, 244: 118713. |
66 | LEE Xin Jiat, Hwai Chyuan ONG, GAN Yong Yang, et al. State of art review on conventional and advanced pyrolysis of macroalgae and microalgae for biochar, bio-oil and bio-syngas production[J]. Energy Conversion and Management, 2020, 210: 112707. |
67 | SU Guangcan, Hwai Chyuan ONG, I M Rizwanul FATTAH, et al. State-of-the-art of the pyrolysis and co-pyrolysis of food waste: Progress and challenges[J]. Science of the Total Environment, 2022, 809: 151170. |
68 | 沈超青. 广州市餐厨垃圾的资源化利用研究[D]. 广州: 华南理工大学, 2013. |
SHEN Chaoqing. Resource utilization of the kitchen waste in Guangzhou[D]. Guangzhou: South China University of Technology, 2013. | |
69 | PARK Chanyeong, LEE Nahyeon, KIM Jisu, et al. Co-pyrolysis of food waste and wood bark to produce hydrogen with minimizing pollutant emissions[J]. Environmental Pollution, 2021, 270: 116045. |
70 | Gábor NAGY, Zsolt DOBÓ. Experimental investigation of fixed-bed pyrolysis and steam gasification of food waste blended with woody biomass[J]. Biomass and Bioenergy, 2020, 139: 105580. |
71 | CHEN Lin, YU Zhaosheng, FANG Shiwen, et al. Co-pyrolysis kinetics and behaviors of kitchen waste and chlorella vulgaris using thermogravimetric analyzer and fixed bed reactor[J]. Energy Conversion and Management, 2018, 165: 45-52. |
72 | TANG Yijing, HUANG Qunxing, SUN Kai, et al. Co-pyrolysis characteristics and kinetic analysis of organic food waste and plastic[J]. Bioresource Technology, 2018, 249: 16-23. |
73 | KIM Soosan, LEE Younghyun, LIN Kun-Yi Andrew, et al. The valorization of food waste via pyrolysis[J]. Journal of Cleaner Production, 2020, 259: 120816. |
74 | KIM Soosan, LEE Changgu, KIM Yong Tae, et al. Effect of Pt catalyst on the condensable hydrocarbon content generated via food waste pyrolysis[J]. Chemosphere, 2020, 248: 126043. |
75 | CHAIHAD Nichaboon, KARNJANAKOM Surachai, KURNIA Irwan, et al. Catalytic upgrading of bio-oils over high alumina zeolites[J]. Renewable Energy, 2019, 136: 1304-1310. |
76 | KADLIMATTI H M, Raj MOHAN B, SAIDUTTA M B. Microwave-assisted pyrolysis of food waste: Optimization of fixed carbon content using response surface methodology[J]. Biofuels-UK, 2019, 12(9): 1051-1058. |
77 | 赵计伟. 餐厨基生物炭的制备及应用潜力研究[D]. 北京: 北京化工大学, 2019. |
ZHAO Jiwei. Study on preparation and application potential of kitchen-based biomass carbon[D]. Beijing: Beijing University of Chemical Technology, 2019. | |
78 | 袁婷婷, 席雪萍, 齐超, 等. 生物炭修复土壤重金属污染的研究进展[J]. 环境科学与管理, 2022, 47(3): 123-126. |
YUAN Tingting, XI Xueping, QI Chao, et al. Research progress on biochar remediation of heavy metal contaminated soil[J]. Environmental Science and Management, 2022, 47(3): 123-126. | |
79 | 王楠, 张珺婷, 朱昊辰, 等. 由餐厨垃圾制备生物炭的研究进展[J]. 环境科学与技术, 2016, 39(S2): 245-250. |
WANG Nan, ZHANG Junting, ZHU Haochen, et al. Research progress in producing biochar from food waste[J]. Environmental Science & Technology, 2016, 39(S2): 245-250. | |
80 | 李荭荭, 李洲, 李海龙, 等. 生物炭与硅酸钠复合施加抑制水稻对土壤铅吸收富集的机制研究[J]. 环境科学学报, 2022, 42(7): 446-455. |
LI Honghong, LI Zhou, LI Hailong, et al. The combinations of biochar and sodium silicate reduced the accumulation and transfer of Pb in soil-rice system[J]. Acta Scientiae Circumstantiae, 2022, 42(7): 446-455. | |
81 | 李忱昊. 生物炭修复污染土壤的研究进展[J]. 资源节约与环保, 2022(2): 91-93. |
LI Chenhao. Research progress on biochar remediation of contaminated soil[J]. Resources Economization & Environmental Protection, 2022(2): 91-93. | |
82 | 袁访, 李开钰, 杨慧, 等. 生物炭施用对黄壤土壤养分及酶活性的影响[J]. 环境科学, 2022, 43(9): 4655-4661. |
YUAN Fang, LI Kaiyu, YANG Hui, et al. Effects of biochar application on yellow soil nutrients and enzyme activities[J]. Environmental Science, 2022, 43(9): 4655-4661. | |
83 | 夏桂敏, 王宇佳, 王淑君, 等. 灌溉方式与生物炭对花生根系、磷素利用及产量的影响[J]. 农业机械学报, 2022, 53(2): 316-326. |
XIA Guimin, WANG Yujia, WANG Shujun, et al. Effects of irrigation methods and biochar on peanut root, phosphorus utilization and yield[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(2): 316-326. | |
84 | 黄钰坪, 王登辉, 惠世恩, 等. 生物炭材料吸附VOCs研究进展[J]. 洁净煤技术, 2022, 28(2): 40-53. |
HUANG Yuping, WANG Denghui, HUI Shien, et al. Research progress of VOCs adsorption by biochar material[J]. Clean Coal Technology, 2022, 28(2): 40-53. | |
85 | 朱俊波, 赵建兵, 周世萍, 等. 花生壳生物炭去除水中铅镉离子的性能及吸附机理研究[J]. 西南林业大学学报(自然科学), 2022, 42(5): 78-86. |
ZHU Junbo, ZHAO Jianbing, ZHOU Shiping, et al. Study on adsorption performance and mechanism of peanut shell biochar for Pb2+ and Cd2+ in water[J]. Journal of Southwest Forestry University (Natural Sciences), 2022, 42(5): 78-86. | |
86 | 刘建勋, 刘根起, 尹德忠, 等. 花生壳生物炭吸附剂的制备及性能研究[J]. 广东化工, 2022, 49(6): 23-25. |
LIU Jianxun, LIU Gengqi, YIN Dezhong, et al. Preparation and properties of peanut shell biochar adsorbent[J]. Guangdong Chemical Industry, 2022, 49(6): 23-25. | |
87 | 刘总堂, 邵江, 李艳, 等. 碱改性小麦秸秆生物炭对水中四环素的吸附性能[J]. 中国环境科学, 2022, 42(8): 3736-3743. |
LIU Zongtang, SHAO Jiang, LI Yan, et al. Adsorption performance of tetracycline in water by alkali-modified wheat straw biochars[J]. China Environmental Science, 2022, 42(8): 3736-3743. | |
88 | SHEHZAD Areeb, BASHIR Mohammed J K, SETHUPATHI Sumathi, et al. An overview of heavily polluted landfill leachate treatment using food waste as an alternative and renewable source of activated carbon[J]. Process Safety and Environmental Protection, 2015, 98: 309-318. |
89 | 袁艳文, 赵立欣, 孟海波, 等. 生物质炭化热解气催化重整制取费-托合成气研究进展[J]. 化工进展, 2019, 38(S1): 152-158. |
YUAN Yanwen, ZHAO Lixin, MENG Haibo, et al. Research on the preparation of Fischer-Tropsch synthesis gas by biomass carbonization pyrolysis gas catalytic reforming[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 152-158. | |
90 | 李盾. 玉米秸秆热解气催化重整制备合成气特性实验研究[D]. 郑州: 河南农业大学, 2019. |
LI Dun. Experimental study on the characteristics of catalytic reforming of corn straw pyrolysis gas to synthetic gas[D]. Zhengzhou: Henan Agricultural University, 2019. | |
91 | 刘心志, 张后雷. 热解过程的物料受热方式与热解气品质分析[J]. 能源研究与利用, 2017(2): 24-30, 36. |
LIU Xinzhi, ZHANG Houlei. Analysis of heating mode of materials and pyrolysis gas quality in pyrolysis process[J]. Energy Research & Utilization, 2017(2): 24-30, 36. | |
92 | 刘辉. 生物质热解气生物法甲烷化工艺优化及机理探究[D]. 北京: 北京化工大学, 2016. |
LIU Hui. Research on the mechanism and process optimization of biological methanation of biomass pyrolysis gas[D]. Beijing: Beijing University of Chemical Technology, 2016. | |
93 | 李伟玉. 热解气活化法制备生物质活性炭及其吸附应用[D]. 大连: 大连理工大学, 2017. |
LI Weiyu. Preparation of activated carbons by pyrolysis gas and their adsorption application[D]. Dalian: Dalian University of Technology, 2017. | |
94 | 李伟玉, 李爱民. 热解气活化的活性炭对水体中甲萘威的吸附性能[J]. 环境工程学报, 2018, 12(1): 41-48. |
LI Weiyu, LI Aimin. Adsorption performance of carbaryl of wastewater on activated carbons prepared by pyrolysis gas activation[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 41-48. | |
95 | 李荣萱. 双金属催化剂用于木质素热解油加氢脱氧的研究[D]. 广州: 广东工业大学, 2021. |
LI Rongxuan. Study on the bimetallic catalysts hydrodeoxygenation of lignin pyrolysis oil[D]. Guangzhou: Guangdong University of Technology, 2021. | |
96 | 丁超, 张振文, 王陆洋, 等. 低温热解油厌氧消化产甲烷条件研究[J]. 中国环境科学, 2021, 41(8): 3676-3683. |
DING Chao, ZHANG Zhenwen, WANG Luyang, et al. The research on anaerobic digestion conditions of biomethanation using low-temperature pyrolysis oil[J]. China Environmental Science, 2021, 41(8): 3676-3683. | |
97 | 王铖, 梅德清, 郭冬梅, 等. 提质生物质热解油的燃烧与排放特性[J]. 石油学报(石油加工), 2020, 36(1): 130-136. |
WANG Cheng, MEI Deqing, GUO Dongmei, et al. Combustion and emission characteristics of upgraded biomass pyrolysis oil[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(1): 130-136. | |
98 | 庄诗韵, 陈玉保, 张旭, 等. 热解油加氢催化制航空燃料工艺及响应面优化[J]. 太阳能学报, 2021, 42(10): 311-316. |
ZHUANG Shiyun, CHEN Yubao, ZHANG Xu, et al. Optimization of process conditions and response surface on catalytic hydrotreatment of pyrolysis oil for producing aviation fuel[J]. Acta Energiae Solaris Sinica, 2021, 42(10): 311-316. | |
99 | 郝亚杰. 麻疯树油一步加氢催化制备生物航空煤油的研究[D]. 昆明: 云南师范大学, 2017. |
HAO Yajie. Catalytic preparation of bio-aviation kerosene by one-step hydrogenation of jatropha oil[D]. Kunming: Yunnan Normal University, 2017. | |
100 | 常苗苗. 热解油组分对地暖木地板用改性酚醛树脂甲醛释放的影响[D]. 北京: 北京林业大学, 2020. |
CHANG Miaomiao. Effect of bio-oil components on formaldehyde emission of phenol-formaldehyde resin modified by bio-oil for wooden heating[D]. Beijing: Beijing Forestry University, 2020. |
[1] | LI Zhiyuan, HUANG Yaji, ZHAO Jiaqi, YU Mengzhu, ZHU Zhicheng, CHENG Haoqiang, SHI Hao, WANG Sheng. Characterization of heavy metals during co-pyrolysis of sludge with PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4947-4956. |
[2] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[3] | ZHANG Shan, ZHONG Zhaoping, YANG Yuxuan, DU Haoran, LI Qian. Enrichment of heavy metals in pyrolysis of municipal solid waste by phosphate modified kaolin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3893-3903. |
[4] | LI Dongxian, WANG Jia, JIANG Jianchun. Producing biofuels from soapstock via pyrolysis and subsequent catalytic vapor-phase hydrotreating process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2874-2883. |
[5] | LI Ruolin, HE Shaolin, YUAN Hongying, LIU Boyue, JI Dongli, SONG Yang, LIU Bo, YU Jiqing, XU Yingjun. Effect of in-situ pyrolysis on physical properties of oil shale and groundwater quality [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3309-3318. |
[6] | WANG Zhiwei, GUO Shuaihua, WU Mengge, CHEN Yan, ZHAO Junting, LI Hui, LEI Tingzhou. Recent advances on catalytic co-pyrolysis of biomass and plastic [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2655-2665. |
[7] | ZHAO Jiaqi, HUANG Yaji, LI Zhiyuan, DING Xueyu, QI Shuaijie, ZHANG Yuyao, LIU Jun, GAO Jiawei. Characteristics of three-phase products from co-pyrolysis of sewage sludge and PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2122-2129. |
[8] | YANG Ziqiang, LI Fenghai, GUO Weijie, MA Mingjie, ZHAO Wei. Review on phosphorus migration and transformation during municipal sewage sludge heat treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2081-2090. |
[9] | LIU Jing, LIN Lin, ZHANG Jian, ZHAO Feng. Research progress in pore size regulation and electrochemical performance of biomass-based carbon materials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1907-1916. |
[10] | LIANG Yijing, MA Yan, LU Zhanfeng, QIN Fusheng, WAN Junjie, WANG Zhiyuan. Experimental investigation on the anti-coking performance of La1-x Sr x MnO3 perovskite coating [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1769-1778. |
[11] | PAN Yuhan, XU Jun, ZHAO Guangjie, LIN Chengqian, JIN Liang, XUE Zhiliang, ZHOU Yonggang, HUANG Qunxing. Development of pilot-plant for the step pyrolysis of waste tires and analysis of product characteristics [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1240-1247. |
[12] | HE Yangdong, CHANG Honggang, WANG Dan, CHEN Changjie, LI Yaxin. Development of methane pyrolysis based on molten metal technology for coproduction of hydrogen and solid carbon products [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1270-1280. |
[13] | ZHENG Yunwu, PEI Tao, LI Donghua, WANG Jida, LI Jirong, ZHENG Zhifeng. Production of hydrocarbon-rich bio-oil by catalytic biomass pyrolysis over metal oxide improved P/HZSM-5 catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1353-1364. |
[14] | DUAN Yihang, GAO Ningbo, QUAN Cui. Effect of hydrothermal treatment on pyrolysis characteristics and kinetics of oily sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 603-613. |
[15] | HU Zhaoyan, ZHANG Jingxin, HE Yiliang. Catalytic pyrolysis of polypropylene plastics and product properties with Fe-loaded sludge biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 631-640. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |