Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (4): 2013-2023.DOI: 10.16085/j.issn.1000-6613.2022-1026
• Biochemical and pharmaceutical engineering • Previous Articles Next Articles
SI Yinfang1,2,3(), HU Yujie1,2,3, ZHANG Fan2,4, DONG Hao2,3,5, SHE Yuehui1,2,3()
Received:
2022-06-02
Revised:
2022-08-11
Online:
2023-05-08
Published:
2023-04-25
Contact:
SHE Yuehui
司银芳1,2,3(), 胡语婕1,2,3, 张凡2,4, 董浩2,3,5, 佘跃惠1,2,3()
通讯作者:
佘跃惠
作者简介:
司银芳(1997—),女,硕士研究生,研究方向为生物纳米材料合成与应用。E-mail:syf18829025503@163.com。
基金资助:
CLC Number:
SI Yinfang, HU Yujie, ZHANG Fan, DONG Hao, SHE Yuehui. Biosynthesis of zinc oxide nanoparticles and its application to antibacterial[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2013-2023.
司银芳, 胡语婕, 张凡, 董浩, 佘跃惠. 生物合成氧化锌纳米颗粒材料及其抗菌应用[J]. 化工进展, 2023, 42(4): 2013-2023.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1026
原料 | 抑制菌种 | 粒径/nm | 应用 | 参考文献 | 年份 |
---|---|---|---|---|---|
植物 | |||||
澳橙皮提取液、Zn(NO3)2溶液、羧甲基纤维素钠(CMC) | 灰霉菌(Botrytis cinerea)、大肠杆菌(Escherichia coli)、金黄色葡萄球菌(Staphylococcus aureus) | 33.1±11.7 | 在食品表面形成涂膜,抑制食品表面微生物的生长 | [ | 2020 |
辣木叶提取物、 硝酸锌氢氧化物 | 革兰氏阳性菌、革兰氏阴性菌 | 50 | 阻碍革兰氏阳性和革兰氏阴性 细菌菌株的微生物生物膜形成 | [ | 2021 |
百里香提取物、 二水乙酸锌溶液 | 枯草芽孢杆菌(Bacillus subtilis subsp) | 10~35 | 体外抗菌 | [ | 2021 |
芦荟提取物、Zn(NO3)2溶液 | 大肠杆菌 | 452 | [ | 2020 | |
茉莉花提取物、 葡萄糖酸锌水合物 | 大肠杆菌、屎肠球菌(Enterococcus Faecium) | 2~4 | 抗菌剂 | [ | 2016 |
接骨木(Sambucus ebulus) 提取物、二水乙酸锌 | 蜡样芽孢杆菌(Bacillus cereus)、 金黄色葡萄球菌、大肠杆菌 | 17 | 光催化降解亚甲基蓝染料污染物 | [ | 2020 |
微生物 | |||||
铜绿假单胞菌(P. aeruginosa)JS29、Zn(NO3)2溶液 | 金黄色葡萄球菌 | 40~50 | 药物替代品、抗菌 | [ | 2021 |
高耐硫酸锌的植物乳杆菌LP4、Zn(NO3)2溶液 | 9~35 | 脂肪酶的固定化 | [ | 2020 | |
嗜水气单胞菌(Aeromonashydrophila)、ZnO | 铜绿假单胞菌、黄曲霉 | 57.72 | 抗菌剂 | [ | 2012 |
地衣芽孢杆菌(Bacilluslicheniformis)、二水乙酸锌 | 620 | 光催化降解有机污染物 | [ | 2014 | |
烟曲霉TFR-8、Zn(NO3)2溶液 | 1.2~6.8 | 生物纳米肥料,促进莱豆生长 | [ | 2013 | |
藻类 | |||||
鞭毛藻(Dinoflagellate)、 乙酸锌溶液 | 金黄色葡萄球菌、大肠杆菌 | 20~40 | 抗菌 | [ | 2021 |
马尾藻(Scagassum)、 乙酸锌二水合物溶液 | 人肝癌细胞系(HepG2) | 抗血管生成和抗凋亡作用,可 作为癌症治疗的补充药物 | [ | 2018 | |
江蓠(Gracilaria) | 前列腺癌细胞 | 335 | 癌症治疗的补充药物 | [ | 2014 |
马尾藻、脱水乙酸锌溶液 | 30~57 | 生物医学和药学 | [ | 2014 |
原料 | 抑制菌种 | 粒径/nm | 应用 | 参考文献 | 年份 |
---|---|---|---|---|---|
植物 | |||||
澳橙皮提取液、Zn(NO3)2溶液、羧甲基纤维素钠(CMC) | 灰霉菌(Botrytis cinerea)、大肠杆菌(Escherichia coli)、金黄色葡萄球菌(Staphylococcus aureus) | 33.1±11.7 | 在食品表面形成涂膜,抑制食品表面微生物的生长 | [ | 2020 |
辣木叶提取物、 硝酸锌氢氧化物 | 革兰氏阳性菌、革兰氏阴性菌 | 50 | 阻碍革兰氏阳性和革兰氏阴性 细菌菌株的微生物生物膜形成 | [ | 2021 |
百里香提取物、 二水乙酸锌溶液 | 枯草芽孢杆菌(Bacillus subtilis subsp) | 10~35 | 体外抗菌 | [ | 2021 |
芦荟提取物、Zn(NO3)2溶液 | 大肠杆菌 | 452 | [ | 2020 | |
茉莉花提取物、 葡萄糖酸锌水合物 | 大肠杆菌、屎肠球菌(Enterococcus Faecium) | 2~4 | 抗菌剂 | [ | 2016 |
接骨木(Sambucus ebulus) 提取物、二水乙酸锌 | 蜡样芽孢杆菌(Bacillus cereus)、 金黄色葡萄球菌、大肠杆菌 | 17 | 光催化降解亚甲基蓝染料污染物 | [ | 2020 |
微生物 | |||||
铜绿假单胞菌(P. aeruginosa)JS29、Zn(NO3)2溶液 | 金黄色葡萄球菌 | 40~50 | 药物替代品、抗菌 | [ | 2021 |
高耐硫酸锌的植物乳杆菌LP4、Zn(NO3)2溶液 | 9~35 | 脂肪酶的固定化 | [ | 2020 | |
嗜水气单胞菌(Aeromonashydrophila)、ZnO | 铜绿假单胞菌、黄曲霉 | 57.72 | 抗菌剂 | [ | 2012 |
地衣芽孢杆菌(Bacilluslicheniformis)、二水乙酸锌 | 620 | 光催化降解有机污染物 | [ | 2014 | |
烟曲霉TFR-8、Zn(NO3)2溶液 | 1.2~6.8 | 生物纳米肥料,促进莱豆生长 | [ | 2013 | |
藻类 | |||||
鞭毛藻(Dinoflagellate)、 乙酸锌溶液 | 金黄色葡萄球菌、大肠杆菌 | 20~40 | 抗菌 | [ | 2021 |
马尾藻(Scagassum)、 乙酸锌二水合物溶液 | 人肝癌细胞系(HepG2) | 抗血管生成和抗凋亡作用,可 作为癌症治疗的补充药物 | [ | 2018 | |
江蓠(Gracilaria) | 前列腺癌细胞 | 335 | 癌症治疗的补充药物 | [ | 2014 |
马尾藻、脱水乙酸锌溶液 | 30~57 | 生物医学和药学 | [ | 2014 |
1 | LI Y B, XU J, WANG F, et al. Overprescribeing in China, driven by financial incentives, results in very high use of antibiotics, injections, and corticosteroids[J]. Health Affairs, 2012(31): 1075-1082. |
2 | WANG Z, ZHANG H, HAN J, et al. Deadly sins of antibiotic abuse in China[J]. Infection Control & Hospital Epidemiology, 2017, 38(6): 758-759. |
3 | KHALID A, ABDURAHMAN N, ABDULLAH A, et al. Antibacterial activity of trimetal (CuZnFe) oxide nanoparticles[J]. International Journal of Nanomedicine, 2018, 13: 77-87. |
4 | 麻晓霞, 马玉龙. 氧化锌型复合抗菌材料抗菌活性研究进展[J]. 功能材料, 2018, 49(9): 9061-9066. |
MA Xiaoxia, MA Yulong. Research progress on antibacterial activity of zinc oxide composite antibacterial materials[J]. Functional Materials, 2018, 49(9): 9061-9066. | |
5 | LI J, SONG X, YANG T, et al. A systematic review of antibiotic prescription as sociated with upper respira- tory tract infections in China[J]. Medicine, 2016, 95(19): 3587. |
6 | ALRAJHI A H, AHMED N M, SHAFOURI M A, et al. Green synthesis of zinc oxide nanoparticles using salvia officials extract[J]. Materials Science in Semiconductor Processing, 2021, 125(2): 105641. |
7 | 刘闯, 王元贵, 耿家青, 等. 无机纳米颗粒的生物合成[J]. 化学进展, 2011, 23(12): 2510-2521. |
LIU Chuang, WANG Yuangui, GENG Jiaqing, et al. Biosynthesis of inorganic nanoparticles[J]. Progress in Chemical, 2011, 23(12): 2510-2521. | |
8 | 高燕利. 纳米ZnO绿色制备及其在涂膜保鲜中的应用与锌的迁移评价[D]. 重庆: 西南大学, 2020. |
GAO Yanli. Green synthesis of nano zinc oxide and its application in coating preservation and evaluation of Zn migration[D]. Chongqing: Southwest University, 2020. | |
9 | ABEL S, TESFAYE J L, NAGAPRASAD N, et al. Synthesis and characterization of zinc oxide nanoparticles using moringa leaf extract[J]. Journal of Nanomaterials, 2021, 2021: 1-6. |
10 | SAHIN B, AYDIN R, SOYLU S, et al. The effect of thymus syriacus plant extract on the main physical and antibacterial activities of ZnO nanoparticles synthesized by SILAR method[J]. Inorganic Chemistry Communications, 2022, 135: 109088. |
11 | RASLI N I, BASRI H, HARUN Z. Zinc oxide from aloe vera extract: Two-level factorial screening of biosynthesis parameters[J]. Heliyon, 2020, 6(1): e03156. |
12 | SHARMA D, SABELA M I, KANCHI S, et al. Biosynthesis of ZnO nanoparticles using Jacaranda mimosifolia flowers extract: Synergistic antibacterial activity and molecular simulated facet specific adsorption studies[J]. Journal of Photochemistry and Photobiology B: Biology, 2016, 162: 199-207. |
13 | ALAMDARI S, SASANI GHAMSARI M, LEE C, et al. Preparation and characterization of zinc oxide nanoparticles using leaf extract of Sambucus ebulus [J]. Applied Sciences, 2020, 10(10): 3620. |
14 | MALAKAR C, PATOWARY K, DEKA S, et al. Synthesis, characterization, and evaluation of antibacterial efficacy of rhamnolipid-coated zinc oxide nanoparticles against Staphylococcus aureus [J]. World Journal of Microbiology and Biotechnology, 2021, 37(11): 193. |
15 | 尹春华, 彭思雨, 马垒珍, 等. 纳米氧化锌的生物法合成及固定脂肪酶的研究[J]. 化工学报, 2020, 71(5): 2248-2255. |
YIN Chunhua, PENG Siyu, MA Leizhen, et al. Biosynthesis of ZnO nanoparticles and their application in lipase immobilization[J]. CIESC Journal, 2020, 71(5): 2248-2255. | |
16 | JAYASEELAN C, RAHUMAN A A, KIRTHI A V, et al. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, 90: 78-84. |
17 | TRIPATHI R M, BHADWAL A S, GUPTA R K, et al. ZnO nanoflowers: Novel biogenic synthesis and enhanced photocatalytic activity[J]. Journal of Photochemistry and Photobiology B: Biology, 2014, 141: 288-295. |
18 | RALIYA R, TARAFDAR J C. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.)[J]. Agricultural Research, 2013, 2(1): 48-57. |
19 | THIRUMOORTHY G S, BALASUBRAMANIAM O, KUMARESAN P, et al. Tetraselmis indica mediated green synthesis of zinc oxide (ZnO) nanoparticles and evaluating its antibacterial, antioxidant, and hemolytic activity[J]. BioNanoScience, 2021, 11(1): 172-181. |
20 | SANAEIMEHR Z, JAVADI I, NAMVAR F. Antiangiogenic and antiapoptotic effects of green-synthesized zinc oxide nanoparticles using Sargassum muticum algae extraction[J]. Cancer Nanotechnology, 2018, 9(1): 3. |
21 | PRIYADHARSHINI R I, PRASANNARAJ G, GEETHA N, et al. Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines[J]. Applied Biochemistry and Biotechnology, 2014, 174(8): 2777-2790. |
22 | AZIZI S, AHMAD M B, NAMVAR F, et al. Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract[J]. Materials Letters, 2014, 116: 275-277. |
23 | KRÓL A, POMASTOWSKI P, RAFIŃSKA K, et al. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism[J]. Advances in Colloid and Interface Science, 2017, 249: 37-52. |
24 | KHAN M M, MATUSSIN S N, RAHMAN A. Recent progress of phytogenic synthesis of ZnO, SnO2, and CeO2 nanomaterials[J]. Bioprocess and Biosystems Engineering, 2022, 45(4): 619-645. |
25 | IRAVANI S. Green synthesis of metal nanoparticles using plants[J]. Green Chemistry, 2011, 13(10): 2638-2650. |
26 | GOUR A, JAIN N K. Advances in green synthesis of nanoparticles[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2019, 47(1): 844-851. |
27 | MANDAL D, BOLANDER M E, MUKHOPADHYAY D, et al. The use of microorganisms for the formation of metal nanoparticles and their application[J]. Applied Microbiology and Biotechnology, 2006, 69(5): 485-492. |
28 | SHUKLA A K, IRAVANI S. Metallic nanoparticles: Green synthesis and spectroscopic characterization[J]. Environmental Chemistry Letters, 2017, 15(2): 223-231. |
29 | ANU R, NISHA K, MEGHA T, et al. Leaf-extract mediated zero-valent iron for oxidation of Arsenic (Ⅲ): Preparation, characterization and kinetics[J]. Chemical Engineering Journal, 2018, 347: 91-100. |
30 | ALI M, KHAN T, FATIMA K, et al. Selected hepatoprotective herbal medicines: Evidence from ethnomedicinal applications, animal models, and possible mechanism of actions[J]. Phytotherapy Research, 2018, 32(2): 199-215. |
31 | ZHOU Y, LIN W, HUANG J, et al. Biosynthesis of gold nanoparticles by foliar broths: Roles of biocompounds and other attributes of the extracts[J]. Nanoscale Research Letters, 2010, 5(8): 1351-1359. |
32 | RANA A, YADAV K, JAGADEVAN S. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity[J]. Journal of Cleaner Production, 2020, 272: 122880. |
33 | ACALYPHA Indica Linn. Biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells[J]. Biotechnol Rep., 2014, 4: 42-49. |
34 | BUKHARI A, IJAZ I, GILANI E, et al. Green synthesis of metal and metal oxide nanoparticles using different plants’ parts for antimicrobial activity and anticancer activity: A review article[J]. Coatings, 2021, 11(11): 1374. |
35 | ZHAO X, XIA Y, LI Q, et al. Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial activity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 444: 180-188. |
36 | BARZINJY A A, HAMAD S M, ABDULRAHMAN A F, et al. Biosynthesis, characterization and mechanism of formation of ZnO nanoparticles using petroselinum crispum leaf extract[J]. Current Organic Synthesis, 2020, 17(7): 558-566. |
37 | KHATANA C, KUMAR A, ALRUWAYS M W. Antibacterial potential of zinc oxide nanoparticles synthesized using aloe vera (L.) Burm. f.: A green approach to combat drug resistance[J]. J. Pure Appl. Microbiol., 2021, 15(4): 1907-1914. |
38 | MATINISE N, FUKU X G, KAVIYARASU K, et al. ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation[J]. Applied Surface Science, 2017, 406(Jun.1): 339-347. |
39 | 郭慧慧, 李红卫, 韩涛, 等. 冬枣冷藏期间果皮和果肉抗氧化物质含量及其抗氧化活性的变化[J]. 林业科学, 2013, 49(1): 85-90. |
GUO Huihui, LI Hongwei, HAN Tao, et al. Changes of active constituents and their relationship with antioxidant capacity in peel and pulp of ‘Dongzao’Jujube during storage[J]. Scientia Silvae Sinicae, 2013, 49(1): 85-90. | |
40 | BAKCHICHE B, HABATI M, BENMEBAREK A, et al. Total phenolic, flavonoid contents and antioxidant activities of honey and propolis collected from the region of Laghouatl (South of Algeria)[J]. World News of Natural Sciences, 2017, 1(2): 000110. |
41 | 冯阳阳, 赵众从, 杨文博, 等. 微生物合成金属纳米颗粒及在稠油催化降黏中的应用研究进展[J]. 化工进展, 2021, 40(4): 2215-2226. |
FENG Yangyang, ZHAO Zhongcong, YANG Wenbo, et al. Microbial natural synthetic metal nanoparticles and the application in heavy oil catalytic viscosity reduction [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2215-2226. | |
42 | GHOSH S, AHMAD R, BANERJEE K, et al. Mechanistic aspects of microbe-mediated nanoparticle synthesis[J]. Frontiers in Microbiology, 2021, 12: 638068. |
43 | IRAVANI S. Bacteria in nanoparticle synthesis: Current status and future prospects[J]. International Scholarly Research Notices, 2014. |
44 | ANIL KUMAR S, ABYANEH M K, GOSAVI S W, et al. Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3 [J]. Biotechnology Letters, 2007, 29(3): 439-445. |
45 | VAIDYANATHAN R, GOPALRAM S, KALISHWARALAL K, et al. Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity[J]. Colloids and surfaces B: Biointerfaces, 2010, 75(1): 335-341. |
46 | OVAIS M, KHALIL A, AYAZ M, et al. Biosynthesis of metal nanoparticles via microbial enzymes: A mechanistic approach[J]. International Journal of Molecular Sciences, 2018, 19(12). |
47 | LEWISOSCAR F, VISMAYA S, ARUNKUMAR M, et al. Algal nanoparticles: Synthesis and biotechnological potentials[J]. Algae-Organisms for Imminent Biotechnology, 2016, 7: 157-182. |
48 | THAKKAR K N, MHATRE S S, PARIKH R Y. Biological synthesis of metallic nanoparticles[J]. Nanomedicine, 2010, 6(2): 257-262. |
49 | CASTRO L, BLÁZQUEZ M L, MUÑOZ J A, et al. Biological synthesis of metallic nanoparticles using algae[J]. IET Nanobiotechnology, 2013, 7(3): 109-116. |
50 | MATA Y N, TORRES E, BLAZQUEZ M L, et al. Gold (Ⅲ) biosorption and bioreduction with the brown alga Fucus vesiculosus [J]. Journal of Hazardous Materials, 2009, 166(2/3): 612-618. |
51 | 李马成, 黄勇, 李林, 等. 纳米氧化锌抑菌机理及影响因素研究进展[J]. 饲料研究, 2021, 44(6): 4. |
LI Macheng, HUANG Yong, LI Lin, et al. Research progress on mechanisms bacteriostasis and affecting factors of nano-zinc oxide[J]. Feed Research, 2021, 44(6): 4. | |
52 | TRAPALIS C C, KORKAS G, KOKKORIS M, et al. Study of antibacterial composite Cu/SiO2 thin coatings[J]. Journal of Sol-gel Science and Technology, 2003, 26(1/2/3): 1213-1218 |
53 | 唐二军. 氧化锌/聚合物复合微粒材料的制备及抗菌特性研究[D]. 天津: 天津大学, 2005. |
TANG Erjun. Study on zinc oxide/polymer composite particles with antibacterial property[D]. Tianjin: Tianjin University, 2005. | |
54 | AHMED B, AMEEN F, RIZVI A, et al. Destruction of cell topography, morphology, membrane, inhibition of respiration, biofilm formation, and bioactive molecule production by nanoparticles of Ag, ZnO, CuO, TiO2, and Al2O3 toward beneficial soil bacteria[J]. ACS Omega, 2020, 5(14): 7861-7876. |
55 | BRAYNER R, FERRARI-ILIOU R, BRIVOIS N, et al. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium[J]. Nano Letters, 2006, 6(4): 866-870. |
56 | SILVA B L DA, CAETANO B L, CHIARI-ANDRÉO B G, et al. Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification[J]. Colloids and Surfaces B: Biointerfaces, 2019, 177: 440-447. |
57 | 孙千月, 罗雯静, 梁丹, 等. 纳米锌抗菌机理的研究进展[J]. 口腔医学研究, 2015, 31(2): 195-197. |
SUN Qianyue, LUO Wenjing, LIANG Dan, et al. Research progress on antibacterial mechanism of nano zinc[J]. Journal of Oral Science Research, 2015, 31(2): 195-197. | |
58 | PASQUET J, CHEVALIER Y, COUVAL E, et al. Zinc oxide as a new antimicrobial preservative of topical products: Interactions with common formulation ingredients[J]. International Journal of Pharmaceutics, 2015, 479(1): 88-95. |
59 | 朱文君. ZnO抗菌性能及机理研究[D]. 成都: 西南交通大学, 2010. |
ZHU Wenjun. Study on antibacterial properties and mechanism of ZnO[D]. Chengdu: Southwest Jiaotong University, 2010. | |
60 | SIRELKHATIM A, MAHMUD S, SEENI A, et al. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism[J]. Nano-micro Letters, 2015, 7(3): 219-242. |
61 | CHO W S, DUFFIN R, HOWIE S E M, et al. Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes[J]. Particle and Fibre Toxicology, 2011, 8(1): 1-16. |
62 | JIANG W, MASHAYEKHI H, XING B. Bacterial toxicity comparison between nano-and micro-scaled oxide particles[J]. Environmental Pollution, 2009, 157(5): 1619-1625. |
63 | RAGHUPATHI K R, KOODALI R T, MANNA A C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles[J]. Langmuir, 2011, 27(7): 4020-4028. |
64 | SILVA B, ABUAFY M P, MANAIA E B, et al. Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: An overview[J]. International Journal of Nanomedicine, 2019, 14: 9395-9410. |
65 | KHATAMI M, VARMA R S, ZAFARNIA N, et al. Applications of green synthesized Ag, ZnO and Ag/ZnO nanoparticles for making clinical antimicrobial wound-healing bandages[J]. Sustainable Chemistry and Pharmacy, 2018, 10: 9-15. |
66 | MOGOANT L. Biofilm-resistant nanocoatings based on ZnO nanoparticles and linalool[J]. Nanomaterials, 2021, 11(10): 2564. |
67 | MALIK A R, SHARIF S, SHAHEEN F, et al. Green synthesis of RGO-ZnO mediated Ocimum basilicum leaves extract nanocomposite for antioxidant, antibacterial, antidiabetic and photocatalytic activity[J]. Journal of Saudi Chemical Society, 2022, 26(2): 101438. |
68 | SHI L E, LI Z H, ZHENG W, et al. Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: A review[J]. Food Additives & Contaminants: Part A, 2014, 31(2): 173-186. |
69 | TAN L Y, SIN L T, BEE S T, et al. Funtionalization and mechanical propeties of cotton fabric with ZnO nanoparticles for antibacterial textile application[C]//Solid State Phenomena. Trans Tech Publications Ltd., 2019, 290: 292-297. |
70 | VERBIČ A, ŠALA M, JERMAN I, et al. Novel green in situ synthesis of ZnO nanoparticles on cotton using pomegranate peel extract[J]. Materials, 2021, 14(16): 4472. |
71 | SURESH S, THAMBIDURAI S, ARUMUGAM J, et al. Antibacterial activity and photocatalytic oxidative performance of zinc oxide nanorods biosynthesized using Aerva lanata leaf extract[J]. Inorganic Chemistry Communications, 2022, 139: 109398. |
72 | CHANG T H, LU Y C, YANG M J, et al. Multibranched flower-like ZnO particles from eco-friendly hydrothermal synthesis as green antimicrobials in agriculture[J]. Journal of Cleaner Production, 2020, 262: 121342. |
73 | MODI S, YADAV V K, CHOUDHARY N, et al. Onion peel waste mediated-green synthesis of zinc oxide nanoparticles and their phytotoxicity on mung bean and wheat plant growth[J]. Materials, 2022, 15(7): 2393. |
74 | MOHAMMADI-ALOUCHEH R, HABIBI-YANGJEH A, BAYRAMI A, et al. Green synthesis of ZnO and ZnO/CuO nanocomposites in Mentha longifolia leaf extract: Characterization and their application as anti-bacterial agents[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(16): 13596-13605. |
75 | FAYE G, JEBESSA T, WUBALEM T. Biosynthesis, characterisation and antimicrobial activity of zinc oxide and nickel doped zinc oxide nanoparticles using Euphorbia abyssinica bark extract[J]. IET Nanobiotechnology, 2022, 16(1): 25-32. |
76 | JARVIN M, KUMAR S A, ROSALINE D R, et al. Remarkable sunlight-driven photocatalytic performance of Ag-doped ZnO nanoparticles prepared by green synthesis for degradation of emerging pollutants in water[J]. Environmental Science and Pollution Research, 2022, 29(38):57330-57344 |
77 | MEHRJO F, HASHEMI M, SOLATI Z, et al. Biosynthesis of ZnO nanosheets decorated with Pd nanoparticles and their application for electrochemical investigation of ethanol[J]. Electrocatalysis, 2021, 12(3): 272-282. |
78 | LEMECHO B A, SABIR F K, ANDOSHE D M, et al. Biogenic synthesis of Cu-doped ZnO photocatalyst for the removal of organic dye[J]. Bioinorganic Chemistry and Applications, 2022,2022: 8081494. |
79 | KHYRUN S M F, RIYAS Z M, RAJA V, et al. Environmental and biomedical applications in the synthesis and structural, optical, elemental characterizations of Mg doped ZnO nanoparticles using Coleus aromaticus leafextract[J]. South African Journal of Botany, 2022, 151: 290-300. |
80 | VANDEBRIEL R J, DE JONG W H. A review of mammalian toxicity of ZnO nanoparticles[J]. Nanotechnology, Science and Applications, 2012, 5: 61-71. |
[1] | LIU Yulong, YAO Junhu, SHU Chuangchuang, SHE Yuehui. Biosynthesis and EOR application of magnetic Fe3O4 NPs [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2464-2474. |
[2] | FENG Yangyang, ZHAO Zhongcong, YANG Wenbo, HU Linqi, ZHANG Wenda, SHE Yuehui. Microbial natural synthetic metal nanoparticles and the application in heavy oil catalytic viscosity reduction [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2215-2226. |
[3] | Wenya ZHONG, Wenjia YU, Yiming GU, Jing GUO, Bo FAN, Zhiqiang CAI. Progress of ansamitocins by biosynthesis [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 990-997. |
[4] | Yihang LI, Yuzhu XIONG, Qingpo ZHANG, Jiangbing WU. Preparation of nano zinc oxide/silica hybrid and its effect on properties of natural rubber composites [J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3213-3220. |
[5] | Huaming MAO,Bin ZHANG,Shuai CUI,Xiaoning TANG,Su’e YANG,Xianfa JIANG. Preparation and antibacterial method of Cu2+/Tb2O3 antibacterial silica gel [J]. Chemical Industry and Engineering Progress, 2019, 38(11): 5024-5032. |
[6] | CHENG Shen, ZHANG Songhong, YUN Junxian. Recent advances in microbial synthesis of α-ketoisocaproate [J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4821-4829. |
[7] | YE Junwei, YANG Yaoyao, CHEN Yixin, GAO Mengyang, CHAI Zhengze, LIN Yuan, NING Guiling. Progress of nano-magnesium oxides based antimicrobial materials [J]. Chemical Industry and Engineering Progress, 2018, 37(04): 1460-1467. |
[8] | NI Zheng, GUAN Jintao, SHEN Shaochuan, YUN Junxian. An overview of recent advances in microbial synthesis and separation of phenyllactic acid [J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3627-3633. |
[9] | WU Zongshan, HU Haiyang, REN Yi, LI Li. Progress of antibacterial mechanisms of silver nanoparticles [J]. Chemical Industry and Engineering Progree, 2015, 34(05): 1349-1356,1370. |
[10] | ZUO Huajiang 1,2,WEN Wanhua 2,WU Dingcai 2,FU Ruowen 2. Research status of antibacterial polymeric quaternary ammonium compounds [J]. Chemical Industry and Engineering Progree, 2013, 32(10): 2416-2422. |
[11] | HUANG Jinbiao1,SHANG Long’an2. Advance in biosynthesis of polyhydroxyalkanoate [J]. Chemical Industry and Engineering Progree, 2011, 30(9): 2041-. |
[12] | LI Jinjuan,ZHAO Lin,TAN Xin,HUANG Yu,LIU Tingyi. Synthesis and characterization of PHA produced by acclimated activated sludge from acidified starchy wastewater [J]. Chemical Industry and Engineering Progree, 2011, 30(7): 1618-. |
[13] | WANG Haisheng,ZHANG Xiaoxia,LU Yuan,RUAN Zhiyong,XING Xinhui,JIANG Ruibo. Recent research progress of bacterial violacein [J]. Chemical Industry and Engineering Progree, 2008, 27(3): 315-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |