Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (10): 5530-5540.DOI: 10.16085/j.issn.1000-6613.2021-2667
• Materials science and technology • Previous Articles Next Articles
DING Junyi1(), CHEN Yingdong1, WANG Shuhao1, YAN Wentao1, ZHOU Yong1,2(), GAO Congjie1
Received:
2021-12-31
Revised:
2022-02-07
Online:
2022-10-21
Published:
2022-10-20
Contact:
ZHOU Yong
丁俊毅1(), 陈营东1, 王书浩1, 严文韬1, 周勇1,2(), 高从堦1
通讯作者:
周勇
作者简介:
丁俊毅(1997—),男,硕士研究生,研究方向为膜科学与技术。E-mail:1149857769@qq.com。
基金资助:
CLC Number:
DING Junyi, CHEN Yingdong, WANG Shuhao, YAN Wentao, ZHOU Yong, GAO Congjie. Methanol swelling-resistant novel TFC membrane based on polyisobutylene amine modification[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5530-5540.
丁俊毅, 陈营东, 王书浩, 严文韬, 周勇, 高从堦. 基于聚异丁烯胺改性的耐甲醇溶胀新型薄膜复合膜[J]. 化工进展, 2022, 41(10): 5530-5540.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2667
膜样品 | 水相溶液 | 有机相溶液 | |||
---|---|---|---|---|---|
MPD浓度 /g·L-1 | CSA浓度 /g·L-1 | pH(TEA) | TMC浓度 /g·L-1 | PIBA浓度 /g·L-1 | |
P0 | 20 | 40 | 10 | 1 | 0 |
P1 | 20 | 40 | 10 | 1 | 0.2 |
P2 | 20 | 40 | 10 | 1 | 0.4 |
P3 | 20 | 40 | 10 | 1 | 0.6 |
P4 | 20 | 40 | 10 | 1 | 0.8 |
P5 | 20 | 40 | 10 | 1 | 1 |
膜样品 | 水相溶液 | 有机相溶液 | |||
---|---|---|---|---|---|
MPD浓度 /g·L-1 | CSA浓度 /g·L-1 | pH(TEA) | TMC浓度 /g·L-1 | PIBA浓度 /g·L-1 | |
P0 | 20 | 40 | 10 | 1 | 0 |
P1 | 20 | 40 | 10 | 1 | 0.2 |
P2 | 20 | 40 | 10 | 1 | 0.4 |
P3 | 20 | 40 | 10 | 1 | 0.6 |
P4 | 20 | 40 | 10 | 1 | 0.8 |
P5 | 20 | 40 | 10 | 1 | 1 |
膜 | 表面平均孔径/nm | 表面孔隙密度/个·μm-2 | 表面孔隙率/% |
---|---|---|---|
P0 | 19.9±8.5 | 153±23 | 5.40±0.14 |
P3 | 18.2±7.6 | 109±11 | 2.77±0.25 |
膜 | 表面平均孔径/nm | 表面孔隙密度/个·μm-2 | 表面孔隙率/% |
---|---|---|---|
P0 | 19.9±8.5 | 153±23 | 5.40±0.14 |
P3 | 18.2±7.6 | 109±11 | 2.77±0.25 |
名称 | 价格/USD·g-1 | 结构式 |
---|---|---|
PIB | 1.876 | |
PIBA | 0.1705 |
名称 | 价格/USD·g-1 | 结构式 |
---|---|---|
PIB | 1.876 | |
PIBA | 0.1705 |
1 | HYNES N R J, KUMAR J S, KAMYAB H, et al. Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector—A comprehensive review[J]. Journal of Cleaner Production, 2020, 272: 122636. |
2 | JIA Fu, YIN Shiyuan, CHEN Lujie, et al. The circular economy in the textile and apparel industry: a systematic literature review[J]. Journal of Cleaner Production, 2020, 259: 120728. |
3 | STONE C, WINDSOR F M, MUNDAY M, et al. Natural or synthetic-how global trends in textile usage threaten freshwater environments[J]. Science of the Total Environment, 2020, 718: 134689. |
4 | SIVARAM N M, GOPAL P M, BARIK D. Toxic waste from textile industries[M]//Energy from toxic organic waste for heat and power generation. Amsterdam: Elsevier, 2019: 43-54. |
5 | KISHOR R, PURCHASE D, SARATALE G D, et al. Environment friendly degradation and detoxification of Congo red dye and textile industry wastewater by a newly isolated Bacillus cohnni (RKS9)[J]. Environmental Technology & Innovation, 2021, 22: 101425. |
6 | YUAN Yiqian, NING Xunan, ZHANG Yaping, et al. Chlorobenzene levels, component distribution, and ambient severity in wastewater from five textile dyeing wastewater treatment plants[J]. Ecotoxicology and Environmental Safety, 2020, 193: 110257. |
7 | ABOU TALEB M F, ABOU EL FADL F I, ALBALWI H. Adsorption of toxic dye in wastewater onto magnetic NVP/CS nanocomposite hydrogels synthesized using gamma radiation[J]. Separation and Purification Technology, 2021, 266: 118551. |
8 | ZHOU Yanbo, LU Jian, ZHOU Yi, et al. Recent advances for dyes removal using novel adsorbents: a review[J]. Environmental Pollution, 2019, 252: 352-365. |
9 | VAHEDI S, TAVAKOLI O, KHOOBI M, et al. Application of novel magnetic β-cyclodextrin-anhydride polymer nano-adsorbent in cationic dye removal from aqueous solution[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80: 452-463. |
10 | PHUGARE S, PATIL P, GOVINDWAR S, et al. Exploitation of yeast biomass generated as a waste product of distillery industry for remediation of textile industry effluent[J]. International Biodeterioration & Biodegradation, 2010, 64(8): 716-726. |
11 | ROBINSON T, CHANDRAN B, NIGAM P. Studies on desorption of individual textile dyes and a synthetic dye effluent from dye-adsorbed agricultural residues using solvents[J]. Bioresource Technology, 2002, 84(3): 299-301. |
12 | KATHERESAN V, KANSEDO J, LAU S Y. Efficiency of various recent wastewater dye removal methods: a review[J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 4676-4697. |
13 | TAN K B, VAKILI M, HORRI B A, et al. Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms[J]. Separation and Purification Technology, 2015, 150: 229-242. |
14 | WANG Jiade, YAO Jiachao, WANG Lou, et al. Multivariate optimization of the pulse electrochemical oxidation for treating recalcitrant dye wastewater[J]. Separation and Purification Technology, 2020, 230: 115851. |
15 | LIU C J, DONG G Y, TSURU T, et al. Organic solvent reverse osmosis membranes for organic liquid mixture separation: a review[J]. Journal of Membrane Science, 2021, 620: 118882. |
16 | WANG Chen, PARK M J, SEO D H, et al. Recent advances in nanomaterial-incorporated nanocomposite membranes for organic solvent nanofiltration[J]. Separation and Purification Technology, 2021, 268: 118657. |
17 | MINHAS M A, RAUF A, RAUF S, et al. Selective and efficient extraction of cationic dyes from industrial effluents through polymer inclusion membrane[J]. Separation and Purification Technology, 2021, 272: 118883. |
18 | SZEKELY G, JIMENEZ-SOLOMON M F, MARCHETTI P, et al.Sustainability assessment of organic solvent nanofiltration: from fabrication to application[J]. Green Chem, 2014, 16(10): 4440-4473. |
19 | LI Xiang, CHEN Binglun, CAI Weibin, et al. Highly stable PDMS-PTFPMS/PVDF OSN membranes for hexane recovery during vegetable oil production[J]. RSC Advances, 2017, 7(19): 11381-11388. |
20 | PRISKE M, LAZAR M, SCHNITZER C, et al. Recent applications of organic solvent nanofiltration[J]. Chemie Ingenieur Technik, 2016, 88(1/2): 39-49. |
21 | HERMANS S, MARIËN H, VAN GOETHEM C, et al. Recent developments in thin film (nano)composite membranes for solvent resistant nanofiltration[J]. Current Opinion in Chemical Engineering, 2015, 8: 45-54. |
22 | JIMENEZ SOLOMON M F, BHOLE Y, LIVINGSTON A G. High flux hydrophobic membranes for organic solvent nanofiltration (OSN)——interfacial polymerization, surface modification and solvent activation[J]. Journal of Membrane Science, 2013, 434: 193-203. |
23 | XIA L L, MCCUTCHEON J R. Understanding the influence of solvents on the intrinsic properties and performance of polyamide thin film composite membranes[J]. Separation and Purification Technology, 2020, 238: 116398. |
24 | XU Sunjie, SHEN Qian, XU Zhenliang, et al. Novel designed TFC membrane based on host-guest interaction for organic solvent nanofiltration (OSN)[J]. Journal of Membrane Science, 2019, 588: 117227. |
25 | JIMENEZ SOLOMON M F, BHOLE Y, LIVINGSTON A G. High flux membranes for organic solvent nanofiltration (OSN) —Interfacial polymerization with solvent activation[J]. Journal of Membrane Science, 2012, 423/424: 371-382. |
26 | LIU Chang, YANG Jing, GUO Bianbian, et al. Interfacial polymerization at the alkane/ionic liquid interface[J]. Angewandte Chemie International Edition, 2021, 60(26): 14636-14643. |
27 | SARANGO L, PASETA L, NAVARRO M, et al. Controlled deposition of MOFs by dip-coating in thin film nanocomposite membranes for organic solvent nanofiltration[J]. Journal of Industrial and Engineering Chemistry, 2018, 59: 8-16. |
28 | NAVARRO M, BENITO J, PASETA L, et al. Thin-film nanocomposite membrane with the minimum amount of MOF by the Langmuir-Schaefer technique for nanofiltration[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 1278-1287. |
29 | DUONG P H H, ANJUM D H, PEINEMANN K V, et al. Thin porphyrin composite membranes with enhanced organic solvent transport[J]. Journal of Membrane Science, 2018, 563: 684-693. |
30 | Yuyan HAI, ZHANG Jinli, SHI Chang, et al. Thin film composite nanofiltration membrane prepared by the interfacial polymerization of 1,2,4,5-benzene tetracarbonyl chloride on the mixed amines cross-linked poly(ether imide) support[J]. Journal of Membrane Science, 2016, 520: 19-28. |
31 | XU Sunjie, SHEN Qian, TONG Yihao, et al. GWF-NH2 enhanced OSN membrane with trifluoromethyl groups in polyamide layer for rapid methanol recycling[J]. Separation and Purification Technology, 2020, 240: 116619. |
32 | CHAN E P, YOUNG A P, LEE J H, et al. Swelling of ultrathin crosslinked polyamide water desalination membranes[J]. Journal of Polymer Science Part B: Polymer Physics, 2013, 51(6): 385-391. |
33 | HERMANS S, DOM E, MARIËN H, et al. Efficient synthesis of interfacially polymerized membranes for solvent resistant nanofiltration[J]. Journal of Membrane Science, 2015, 476: 356-363. |
34 | ZHAO Yanyan, YUAN Qipeng. Effect of membrane pretreatment on performance of solvent resistant nanofiltration membranes in methanol solutions[J]. Journal of Membrane Science, 2006, 280(1/2): 195-201. |
35 | WANG Shuhao, GU Kaifeng, WANG Jian, et al. Enhanced the swelling resistance of polyamide membranes with reinforced concrete structure[J]. Journal of Membrane Science, 2019, 575: 191-199. |
36 | HABIB S, WEINMAN S T. A review on the synthesis of fully aromatic polyamide reverse osmosis membranes[J]. Desalination, 2021, 502: 114939. |
37 | LIND M L, GHOSH A K, JAWOR A, et al. Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes[J]. Langmuir, 2009, 25(17): 10139-10145. |
38 | FREGE V. Swelling and morphology of the skin layer of polyamide composite membranes: an atomic force microscopy study[J]. Environmental Science & Technology, 2004, 38(11): 3168-3175. |
39 | KARAN S, JIANG Z, LIVINGSTON A G, et al. Sub-10nm polyamide nanofilms with ultrafast solvent transport for molecular separation[J]. Science, 2015, 348(6241): 1347-1351. |
40 | GEENS J, DER BRUGGEN B V, VANDECASTEELE C. Characterisation of the solvent stability of polymeric nanofiltration membranes by measurement of contact angles and swelling[J]. Chemical Engineering Science, 2004, 59(5): 1161-1164. |
41 | VAN GOETHEM C, VERBEKE R, HERMANS S, et al. Controlled positioning of MOFs in interfacially polymerized thin-film nanocomposites[J]. Journal of Materials Chemistry A, 2016, 4(42): 16368-16376. |
42 | WANG Shuhao, ZHOU Yong, GAO Congjie. Novel high boron removal polyamide reverse osmosis membranes[J]. Journal of Membrane Science, 2018, 554: 244-252. |
43 | GHOSH A K, JEONG B H, HUANG Xiaofei, et al. Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties[J]. Journal of Membrane Science, 2008, 311(1/2): 34-45. |
44 | SHEN Hongmei, WANG Shuhao, LI Yunhao, et al. MeSiCl3 functionalized polyamide thin film nanocomposite for low pressure RO membrane desalination[J]. Desalination, 2019, 463: 13-22. |
45 | SHI Mengqi, WANG Zhi, ZHAO Song, et al. A novel pathway for high performance RO membrane: preparing active layer with decreased thickness and enhanced compactness by incorporating tannic acid into the support[J]. Journal of Membrane Science, 2018, 555: 157-168. |
46 | YAN Hao, MIAO Xiaopei, XU Jian, et al. The porous structure of the fully-aromatic polyamide film in reverse osmosis membranes[J]. Journal of Membrane Science, 2015, 475: 504-510. |
47 | SHEN Hongmei, WANG Shuhao, XU Hao, et al. Preparation of polyamide thin film nanocomposite membranes containing silica nanoparticles via an in situ polymerization of SiCl4 in organic solution[J]. Journal of Membrane Science, 2018, 565: 145-156. |
48 | ZHENG Junfeng, LI Meng, YU Kai, et al. Sulfonated multiwall carbon nanotubes assisted thin-film nanocomposite membrane with enhanced water flux and anti-fouling property[J]. Journal of Membrane Science, 2017, 524: 344-353. |
49 | GUAN Jingyuan, FAN Lin, LIU Yanan, et al. Incorporating arginine-FeⅢ complex into polyamide membranes for enhanced water permeance and antifouling performance[J]. Journal of Membrane Science, 2020, 602: 117980. |
50 | MA D C, PEH S B, HAN G, et al. Thin-film nanocomposite (TFN) membranes incorporated with super-hydrophilic metal-organic framework (MOF) UiO-66: toward enhancement of water flux and salt rejection[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7523-7534. |
[1] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[2] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[3] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[4] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[5] | HE Meijin. Application and development trend of molecular management in separation technology in petrochemical field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 260-266. |
[6] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
[7] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
[8] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[9] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
[10] | CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610. |
[11] | LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815. |
[12] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[13] | YANG Farong, GU Lili, LIU Yang, LI Weixue, CAI Jieyun, WANG Huiping. Preparation and application of molecularly imprinted polymers of terbutylazine assisted by computer simulation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3157-3166. |
[14] | YANG Jiatian, TANG Jinming, LIANG Zirong, LI Yinhong, HU Huayu, CHEN Yuan. Preparation and application of novel starch-based super absorbent polymer dust suppressant [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3187-3196. |
[15] | ZHOU Lei, SUN Xiaoyan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Development and application of refinery short-cut column model [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2819-2827. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |