Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (S1): 413-421.DOI: 10.16085/j.issn.1000-6613.2025-0576
• Materials science and technology • Previous Articles
LIU Ying(
), BAO Cheng(
), ZHANG Xinxin
Received:2025-04-16
Revised:2025-06-23
Online:2025-11-24
Published:2025-10-25
Contact:
BAO Cheng
通讯作者:
包成
作者简介:刘颖(2000—),女,硕士研究生,研究方向为变压吸附、多孔材料吸附剂。E-mail:m202210137@xs.ustb.edu.cn。
基金资助:CLC Number:
LIU Ying, BAO Cheng, ZHANG Xinxin. Modified copper-carrying activated carbon for hydrogen purification[J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 413-421.
刘颖, 包成, 张欣欣. 用于氢气提纯的改性载铜活性炭[J]. 化工进展, 2025, 44(S1): 413-421.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2025-0576
| 样品名 | 热处理条件 | 浸渍液铜离子浓度/mol·L-1 |
|---|---|---|
| 空白样(PRN) | 无 | 0 |
| DHA0 | Ar,600℃ | 0 |
| LHA0 | Ar,800℃ | 0 |
| MHA0 | Ar,1000℃ | 0 |
| LHA3 | Ar,800℃ | 3 |
| LHA6 | Ar,800℃ | 6 |
| WLHA6 | Ar,800℃ | 6,由水配制的溶液 |
| 样品名 | 热处理条件 | 浸渍液铜离子浓度/mol·L-1 |
|---|---|---|
| 空白样(PRN) | 无 | 0 |
| DHA0 | Ar,600℃ | 0 |
| LHA0 | Ar,800℃ | 0 |
| MHA0 | Ar,1000℃ | 0 |
| LHA3 | Ar,800℃ | 3 |
| LHA6 | Ar,800℃ | 6 |
| WLHA6 | Ar,800℃ | 6,由水配制的溶液 |
| 样品名 | 比表面积/m2·g-1 | 平均孔径/nm | 总孔容积/cm3·g-1 | 微孔容积/cm3·g-1 | 微孔率/% |
|---|---|---|---|---|---|
| PRN | 773 | 1.75 | 0.395 | 0.369 | 93.4 |
| DHA0(Ar,600℃) | 796 | 1.68 | 0.438 | 0.416 | 95.0 |
| LHA0(Ar,800℃) | 832 | 1.98 | 0.470 | 0.392 | 83.4 |
| MHA0(Ar,1000℃) | 812 | 1.74 | 0.435 | 0.409 | 94.0 |
| LHA3(Ar,800℃+3mol/L) | 692 | 2.22 | 0.391 | 0.314 | 80.3 |
| LHA6(Ar,800℃+6mol/L) | 662 | 1.94 | 0.347 | 0.302 | 87.0 |
| WLHA6(Ar,800℃+6mol/L,H2O) | 565 | 1.73 | 0.245 | 0.221 | 90.2 |
| 样品名 | 比表面积/m2·g-1 | 平均孔径/nm | 总孔容积/cm3·g-1 | 微孔容积/cm3·g-1 | 微孔率/% |
|---|---|---|---|---|---|
| PRN | 773 | 1.75 | 0.395 | 0.369 | 93.4 |
| DHA0(Ar,600℃) | 796 | 1.68 | 0.438 | 0.416 | 95.0 |
| LHA0(Ar,800℃) | 832 | 1.98 | 0.470 | 0.392 | 83.4 |
| MHA0(Ar,1000℃) | 812 | 1.74 | 0.435 | 0.409 | 94.0 |
| LHA3(Ar,800℃+3mol/L) | 692 | 2.22 | 0.391 | 0.314 | 80.3 |
| LHA6(Ar,800℃+6mol/L) | 662 | 1.94 | 0.347 | 0.302 | 87.0 |
| WLHA6(Ar,800℃+6mol/L,H2O) | 565 | 1.73 | 0.245 | 0.221 | 90.2 |
| 气体 | Langmuir | Freundlich | ||||
|---|---|---|---|---|---|---|
| qm/cm3·g-1 | b/kPa-1 | R2 | kF | nF | R2 | |
| CO | 22.04 | 6.276 | 0.9723 | 20.09 | 0.3755 | 0.9977 |
| CO2 | 91.98 | 0.7919 | 0.9993 | 41.40 | 0.7174 | 0.9994 |
| CH4 | 45.32 | 0.4525 | 0.9999 | 14.29 | 0.8073 | 0.9995 |
| N2 | 32.82 | 0.1332 | 0.9999 | 3.87 | 0.9302 | 0.9999 |
| H2 | 2.91 | 0.2471 | 0.9999 | 0.5818 | 0.8854 | 0.9996 |
| 气体 | Langmuir | Freundlich | ||||
|---|---|---|---|---|---|---|
| qm/cm3·g-1 | b/kPa-1 | R2 | kF | nF | R2 | |
| CO | 22.04 | 6.276 | 0.9723 | 20.09 | 0.3755 | 0.9977 |
| CO2 | 91.98 | 0.7919 | 0.9993 | 41.40 | 0.7174 | 0.9994 |
| CH4 | 45.32 | 0.4525 | 0.9999 | 14.29 | 0.8073 | 0.9995 |
| N2 | 32.82 | 0.1332 | 0.9999 | 3.87 | 0.9302 | 0.9999 |
| H2 | 2.91 | 0.2471 | 0.9999 | 0.5818 | 0.8854 | 0.9996 |
| [1] | 张翛然, 王亚会, 聂铭歧, 等. 碳中和背景下海外氢能源发展新思路及对我国的启示[J]. 新能源科技, 2023(1): 18-22. |
| ZHANG Xiaoran, WANG Yahui, NIE Mingqi, et al. New ideas of overseas hydrogen energy development in the context of carbon neutrality and its enlightenment to China[J]. New Energy Technology, 2023(1): 18-22. | |
| [2] | 王超, 孙福全, 许晔, 等. 世界主要经济体氢能发展战略剖析与启示[J]. 世界科技研究与发展, 2022, 44(5): 597-604. |
| WANG Chao, SUN Fuquan, XU Ye, et al. Analysis and enlightenment of hydrogen development strategy of world’s major economies[J]. World Sci-Tech R & D, 2022, 44(5): 597-604. | |
| [3] | 李文彬, 吴亚洲, 郑浩, 等. 氢气纯化技术研究进展[J]. 化学工业与工程, 2024, 41(1): 47-70. |
| LI Wenbin, WU Yazhou, ZHENG Hao, et al. Research progress in hydrogen purification technology[J]. Chemical Industry and Engineering, 2024, 41(1): 47-70. | |
| [4] | 何广利, 窦美玲. 氢气中杂质对车用燃料电池性能影响的研究进展[J]. 化工进展, 2021, 40(9): 4815-4822. |
| HE Guangli, DOU Meiling. Progress on effect of hydrogen impurities on the performance of automotive fuel cells[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4815-4822. | |
| [5] | 陈代传. CO吸附剂的表征及变压吸附特性的研究[D]. 南京: 南京工业大学, 2002. |
| CHEN Daichuan. Characterization of CO adsorbent and study on pressure swing adsorption characteristics[D]. Nanjing: Nanjing University of Technology, 2002. | |
| [6] | 苏士焜, 刘唐, 金也, 等. 氢气纯化吸附材料研究进展[J]. 化工进展, 2024, 43(10): 5612-5632. |
| SU Shikun, LIU Tang, JIN Ye, et al. Advances of adsorption materials for hydrogen purification[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5612-5632. | |
| [7] | Kwang-Jun KO, KIM Hyokyung, CHO Young-Ho, et al. Overview of carbon monoxide adsorption performance of pristine and modified adsorbents[J]. Journal of Chemical & Engineering Data, 2022, 67(7): 1599-1616. |
| [8] | 张健. 变压吸附法分离合成气中CO的吸附剂制备及性能研究[D]. 昆明: 昆明理工大学, 2010. |
| ZHANG Jian. Preparation and properties of adsorbents for separating CO from syngas by pressure swing adsorption[D]. Kunming: Kunming University of Science and Technology, 2010. | |
| [9] | 高飞. CuCl负载型吸附剂的制备及性能研究[D]. 天津: 天津大学, 2017. |
| GAO Fei. Preparation and properties of CuCl supported adsorbent[D]. Tianjin: Tianjin University, 2017. | |
| [10] | 杨云, 蒲江涛, 姚中华, 等. 分子筛改性在工业富氢尾气变压吸附提纯燃料电池氢中的应用研究[J]. 天然气化工(C1化学与化工), 2021, 46(S1): 31-38. |
| YANG Yun, PU Jiangtao, YAO Zhonghua, et al. Application of molecular sieve modification in purification of fuel cell hydrogen from industrial hydrogen-rich tail gas by PSA[J]. Natural Gas Chemical Industry, 2021, 46(S1): 31-38. | |
| [11] | ZHUANG Faju, WANG Shougui, GAO Fei, et al. Facile preparation of CuCl@USY adsorbent with excellent carbon monoxide selective adsorption performance from gas mixtures[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 700: 134836. |
| [12] | 胡方舟, 梁峰, 张胜中, 等. Cu(Ⅰ)负载活性炭的制备及其一氧化碳吸附性能研究[J]. 当代化工, 2023, 52(6): 1323-1327. |
| HU Fangzhou, LIANG Feng, ZHANG Shengzhong, et al. Study on the preparation of Cu(Ⅰ)-loaded activated carbon and its carbon monoxide adsorption performance[J]. Contemporary Chemical Industry, 2023, 52(6): 1323-1327. | |
| [13] | KIM Ah-Reum, YOON Tae-Ung, KIM Seung-Ik, et al. Creating high CO/CO2 selectivity and large CO working capacity through facile loading of Cu(Ⅰ) species into an iron-based mesoporous metal-organic framework[J]. Chemical Engineering Journal, 2018, 348: 135-142. |
| [14] | 张子宝. Cu-π络合吸附剂及其脱除CO研究[D]. 大连: 大连理工大学, 2021. |
| ZHANG Zibao. Study on Cu-π complex adsorbent and its removal of CO[D]. Dalian: Dalian University of Technology, 2021. | |
| [15] | LE Van Nhieu, KWON Hyuk Taek, The Ky VO, et al. Microwave-assisted continuous flow synthesis of mesoporous metal-organic framework MIL-100(Fe) and its application to Cu(Ⅰ)-loaded adsorbent for CO/CO2 separation[J]. Materials Chemistry and Physics, 2020, 253: 123278. |
| [16] | Hyunmin OH, BEUM Hee Tae, YOON Young-Seek, et al. Experiment and modeling of adsorption of CO from blast furnace gas onto CuCl/boehmite[J]. Industrial & Engineering Chemistry Research, 2020, 59(26): 12176-12185. |
| [17] | ZHOU Yan, SHEN Yuanhui, FU Qiang, et al. CO enrichment from low-concentration syngas by a layered-bed VPSA process[J]. Industrial & Engineering Chemistry Research, 2017, 56(23): 6741-6754. |
| [18] | The KY VO, TUAN QUANG Duong, HONG NHUNG Dang THI, et al. Cu(Ⅰ)-loaded boehmite microspheres prepared by the continuous flow-assisted spray-drying method for selective carbon monoxide separation[J]. Separation and Purification Technology, 2022, 291: 120941. |
| [19] | FAN Dequan, JIANG Shuchao, QIAO Kai, et al. Cuprous species distribution over CuCl/NaY dependent on acidity and their CO Adsorption/desorption performance study[J]. Chemical Engineering Journal, 2022, 433: 133763. |
| [20] | YANG Hao, FAN Dequan, ZHANG Yanpeng, et al. Study on preparation of CuCl/REY adsorbent with high CO adsorption and selectivity[J]. Separation and Purification Technology, 2021, 279: 119730. |
| [21] | GUO Qiang, QIAO Yu, XIAO Yonghou, et al. Synthesis of hydrophobic CuCl/LaA modified by butyltrichlorosilane towards enhanced CO adsorption under humid environment[J]. Applied Surface Science, 2024, 659: 159882. |
| [22] | LI Congli, WANG Jiang, WANG Zhenfei, et al. Understanding the vacuum autoreduction behavior of Cu species in CuCl/NaY adsorbent for CO/N2 separation[J]. Microporous and Mesoporous Materials, 2024, 365: 112904. |
| [23] | ZHOU Gang, SUN Huiyun, SUN Yueqiang, et al. Study of Cu@MIL-101(Fe) adsorbent for the enhancement of CO adsorption: Effective Cu+ capacity and π complexation[J]. Journal of Solid State Chemistry, 2024, 339: 124961. |
| [24] | NGUYEN Xuan Canh, KANG Jun-Ho, BANG Gina, et al. Pelletized activated carbon-based CO-selective adsorbent with highly oxidation-stable and aggregation-resistant Cu(Ⅰ) sites[J]. Chemical Engineering Journal, 2023, 451: 138758. |
| [25] | LIU Di, WANG Qianqian, HUANG Jiaxing, et al. A simple method for preparing CuCl/activated carbon for selective CO adsorption from hydrogen[J]. China Petroleum Processing & Petrochemical Technology, 2023, 25(1): 115-122. |
| [26] | KONG Liming, ZHANG Ting, LU Yaru, et al. Facile loading of CuCl on SBA-15 for adsorptive desulfurization[J]. Microporous and Mesoporous Materials, 2024, 377: 113217. |
| [27] | Farshad FEYZBAR-KHALKHALI-NEJAD, HASSANI Ehsan, RASHTI Ali, et al. Adsorption-based CO removal: Principles and materials[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105317. |
| [28] | GHALANDARI Vahab, HASHEMIPOUR Hassan, BAGHERI Hamidreza. Experimental and modeling investigation of adsorption equilibrium of CH4, CO2, and N2 on activated carbon and prediction of multi-component adsorption equilibrium[J]. Fluid Phase Equilibria, 2020, 508: 112433. |
| [1] | WANG Ruiqi, LIU Haowei, SUN Yanli, LI Ronghua, WANG Zheng, WU Yuhua, WU Jianbo, ZHANG Hui, BAI Hongcun. Analysis and outlook on the current research state in design, construction and performance regulation of MOFs for efficient hydrogen storage [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 323-339. |
| [2] | WANG Tao, ZHANG Xuebing, ZHANG Qi, CHEN Qiang, ZHANG Kui, MEN Zhuowu. Effects of reduction-carburization temperature and inlet CO concentration on industrial precipitated iron-based catalyst for Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 178-184. |
| [3] | ZHAO Siyang, LI Chenran, LIU Yang. Process optimization for regulating diene selectivity of MTO regenerated catalyst through pre-carbon deposition using C4 by-product [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 205-212. |
| [4] | LI Junliang, LI Yue, SUN Daolai. Hydrodeoxygenation of 1,2-butanediol to 1-butanol over Cu/SiO2-Al2O3 catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 222-231. |
| [5] | WANG Zhen, ZHANG Yaoyuan, WU Qin, SHI Daxin, CHEN Kangcheng, LI Hansheng. Development of Ni/Al2O3-based catalysts for the dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4979-4998. |
| [6] | SUN Mengyuan, LU Shijian, LIU Ling, XUE Yanyang, ZHANG Yunrong, DONG Qi, KANG Guojun. Research progress of MOF and their derivatives in carbon capture [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5339-5350. |
| [7] | YANG Zhenglu, YANG Lifeng, LU Xiaofei, SUO Xian, ZHANG Anyun, CUI Xili, XING Huabin. Advances in machine learning accelerating the screening and discovery of porous adsorbents [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4288-4301. |
| [8] | XU Ruting, ZHAO Jian, SUN Kang, LU Xincheng, JIANG Jianchun, SU Zhonggao, LIU Junli, CHEN Zibiao, SU Zihan. Modification of activated carbon and its purification performance for simulated waste lubricating oil [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4022-4031. |
| [9] | MI Yifang, WANG Baoguo, WANG Wenqiang, SUN Guojin, CAO Zhihai. Preparation of nitrogen self-doped cyanobacterial biomass-based activated carbon for CO2 adsorption [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4223-4232. |
| [10] | HE Yijian, LIU Xiangkun, SHI Yao, DUAN Xuezhi. Catalyst particle shape design for ethane oxidative dehydrogenation to ethylene [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3497-3508. |
| [11] | WEI Zhiqiang, SUN Lili. Current status and challenges of ethanol production technology from industrial carbon-rich gas fermentation [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2563-2576. |
| [12] | HUANG Jiao, ZHU Yaming, YUE Jiaxing, WANG Ying, CHENG Junxia, ZHAO Xuefei. Advances in the preparation, modification and application of spherical activated carbon [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2081-2101. |
| [13] | XUE Lixin, DONG Yongping, CHEN Mengyao, GAO Congjie. Synergistic regulation mechanism of sodium dodecyl sulfate (SDS) and strong base (NaOH) on polyamide composite nanofiltration memrbanes [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2225-2237. |
| [14] | QIU Yujing, LIU Chang, LUO Guohua, DONG Sen, LI Jianhua. Preparation and adsorption performance of adsorbents for removing carbon disulfide from benzene [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2374-2382. |
| [15] | ZHANG Qi, WANG Tao, ZHANG Xuebing, LI Weizhen, CHENG Meng, ZHANG Kui, LYU Yijun, MEN Zhuowu. Advances in Fe-based catalysts for conversion of syngas/CO2 to higher alcohols [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1323-1337. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |