| [1] |
高海洋, 梁龙, 靳开宇, 等. 煤气化渣资源化利用综述[J]. 煤炭科学技术, 2024, 52(8): 192-208.
|
|
GAO Haiyang, LIANG Long, JIN Kaiyu, et al. Review on resource utilization of coal gasification slag[J]. Coal Science and Technology, 2024, 52(8): 192-208.
|
| [2] |
李翔宇, 李旭, 樊盼盼, 等. 利用脱碳气化渣矿化封存CO2制备碳酸钙的影响研究[J]. 燃料化学学报(中英文), 2024, 52(8): 1193-1202.
|
|
LI Xiangyu, LI Xu, FAN Panpan, et al. Study on the impact of using decarbonized gasification slag for CO2 mineralization and storage to prepare calcium carbonate[J]. Journal of Fuel Chemistry and Technology, 2024, 52(8): 1193-1202.
|
| [3] |
LIU Shuo, CHEN Xingtong, AI Weidong, et al. A new method to prepare mesoporous silica from coal gasification fine slag and its application in methylene blue adsorption[J]. Journal of Cleaner Production, 2019, 212: 1062-1071.
|
| [4] |
胡文豪, 张建波, 李少鹏, 等. 煤气化渣制备聚合氯化铝工艺研究[J]. 洁净煤技术, 2019, 25(1): 154-159.
|
|
HU Wenhao, ZHANG Jianbo, LI Shaopeng, et al. Study on the preparation of polyaluminium chloride from coal gasification residue[J]. Clean Coal Technology, 2019, 25(1): 154-159.
|
| [5] |
QU Jiangshan, ZHANG Jianbo, LI Huiquan, et al. A high value utilization process for coal gasification slag: Preparation of high modulus sodium silicate by mechano-chemical synergistic activation[J]. Science of The Total Environment, 2021, 801: 149761.
|
| [6] |
马小路, 袁梦霞, 乔秀臣. 活化煤气化粗渣盐酸浸取机理研究[J]. 无机盐工业, 2016, 48(12): 64-67, 80.
|
|
MA Xiaolu, YUAN Mengxia, QIAO Xiuchen. Hydrochloric acid leaching mechanism of activated coarse coal gasification slag[J]. Inorganic Chemicals Industry, 2016, 48(12): 64-67, 80.
|
| [7] |
ZHAO Longsheng, WANG Lina, QI Tao, et al. Leaching of titanium and silicon from low-grade titanium slag using hydrochloric acid leaching[J]. JOM, 2018, 70(10): 1985-1990.
|
| [8] |
胡文豪. 煤气化渣铝硅组分活化分离与资源化利用基础研究[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2019.
|
|
HU Wenhao. Basic study on activation separation and resource utilization of aluminum and silicon components in coal gasification slag[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2019.
|
| [9] |
文英明. 基于DEM-VOF的搅拌釜内气-液-固三相流传输及稀土浸出特性研究[D]. 赣州: 江西理工大学, 2024.
|
|
WEN Yingming. Study on gas-liquid-solid three-phase flow transfer and rare earth leaching characteristics in stirred tank based on DEM-VOF[D]. Ganzhou: Jiangxi University of Science and Technology, 2024.
|
| [10] |
KAZEMZADEH Argang, Farhad EIN-MOZAFFARI, LOHI Ali, et al. Investigation of hydrodynamic performances of coaxial mixers in agitation of yield-pseudoplasitc fluids: Single and double central impellers in combination with the anchor[J]. Chemical Engineering Journal, 2016, 294: 417-430.
|
| [11] |
PAKZAD Leila, Farhad EIN-MOZAFFARI, UPRETI Simant R, et al. Agitation of Herschel-Bulkley fluids with the Scaba-anchor coaxial mixers[J]. Chemical Engineering Research and Design, 2013, 91(5): 761-777.
|
| [12] |
BAO Yuyun, YANG Bo, XIE Yong, et al. Power demand and mixing performance of coaxial mixers in non-Newtonian fluids[J]. Journal of Chemical Engineering of Japan, 2011, 44(2): 57-66.
|
| [13] |
AYALA Jenniffer Solange, DE MOURA Helder Lima, DE LIMA AMARAL Rodrigo, et al. Two-dimensional shear rate field and flow structures of a pseudoplastic fluid in a stirred tank using particle image velocimetry[J]. Chemical Engineering Science, 2022, 248: 117198.
|
| [14] |
苏杨, 虞培清, 黄志坚. 搅拌技术在聚合反应釜中应用[J]. 化学推进剂与高分子材料, 2003, 1(4): 19-23.
|
|
SU Yang, YU Peiqing, HUANG Zhijian. Applications of mixing technique in polymerization reaction kettle[J]. Chemical Propellants & Polymeric Materials, 2003, 1(4): 19-23.
|
| [15] |
ZADGHAFFARI R, MOGHADDAS J S, REVSTEDT J. Large-eddy simulation of turbulent flow in a stirred tank driven by a Rushton turbine[J]. Computers & Fluids, 2010, 39(7): 1183-1190.
|
| [16] |
RANADE V V, BOURNE J R, JOSHI J B. Fluid mechanics and blending in agitated tanks[J]. Chemical Engineering Science, 1991, 46(8): 1883-1893.
|
| [17] |
汪晶. 多层轴流桨搅拌槽内非牛顿流体气液传质特性研究[D]. 北京: 北京化工大学, 2022.
|
|
WANG Jing. Study on gas-liquid mass transfer characteristics of non-Newtonian fluid in stirred tank with multi-layer axial impeller[D]. Beijing: Beijing University of Chemical Technology, 2022.
|
| [18] |
CHACHI Mohamed, KAMLA Youcef, ALHAFFAR Mouheddin T, et al. Quantitative assessment of agitator performance in an anchor-stirred tank: Investigating the impact of geometry, eccentricity, and rheological characteristics[J]. Arabian Journal for Science and Engineering, 2024, 49(10): 13885-13895.
|
| [19] |
王宏. 假塑性流体搅拌流场混沌特征及混合特性[D]. 青岛: 青岛科技大学, 2021.
|
|
WANG Hong. Chaotic and stiring characteristics of flow field of pseudoplastic fluid[D]. Qingdao: Qingdao University of Science and Technology, 2021.
|
| [20] |
栾德玉. 错位桨搅拌假塑性流体流动与混合特性研究[D]. 济南: 山东大学, 2012.
|
|
LUAN Deyu. Study on flow and mixing characteristics of pseudoplastic fluid stirred by staggered paddles[D]. Jinan: Shandong University, 2012.
|
| [21] |
METZNER A B, REED J C. Flow of non-Newtonian fluids—Correlation of the laminar, transition, and turbulent-flow regions[J]. AIChE Journal, 1955, 1(4): 434-440.
|
| [22] |
刘树磊. 搅拌釜内非牛顿流体的流动与传热数值分析[D]. 上海: 东华大学, 2022.
|
|
LIU Shulei. Numerical analysis of flow and heat transfer of non-Newtonian fluid in stirred tank[D]. Shanghai: Donghua University, 2022.
|
| [23] |
MENTER F R. Influence of freestream values on k-omega turbulence model predictions[J]. AIAA Journal, 1992, 30(6): 1657-1659.
|
| [24] |
SONG Xijie, YAO Rao, SHEN Yubin, et al. Numerical prediction of erosion based on the solid-liquid two-phase flow in a double-suction centrifugal pump[J]. Journal of Marine Science and Engineering, 2021, 9(8): 836.
|
| [25] |
Artur WODOŁAŻSKI, SKIBA Jacek, ZAREBSKA Katarzyna, et al. CFD Modeling of the catalyst oil slurry hydrodynamics in a high pressure and temperature as potential for biomass liquefaction[J]. Energies, 2020, 13(21): 5694.
|
| [26] |
GEORGOULAS Anastasios N, ANGELIDIS Panagiotis B, PANAGIOTIDIS Theologos G, et al. 3D numerical modelling of turbidity currents[J]. Environmental Fluid Mechanics, 2010, 10(6): 603-635.
|
| [27] |
常少华. 不同流动结构对污染物絮凝去除的研究[D]. 南京: 南京信息工程大学, 2023.
|
|
CHANG Shaohua. Study on the effects of different flow structures on pollutant removal via flocculation[D]. Nanjing: Nanjing University of Information Science and Technology, 2023.
|
| [28] |
房洪芹. 双层斜叶组合桨搅拌槽内流体流场的数值模拟及PIV试验研究[D]. 镇江: 江苏大学, 2020.
|
|
FANG Hongqin. Numerical simulation and PIV experimental study on fluid flow field in stirred tank with double-layer inclined blade combined impeller[D]. Zhenjiang: Jiangsu University, 2020.
|
| [29] |
MICHELETTI Martina, NIKIFORAKI Loukia, LEE Kalok C, et al. Particle concentration and mixing characteristics of moderate-to-dense solid-liquid suspensions[J]. Industrial & Engineering Chemistry Research, 2003, 42(24): 6236-6249.
|
| [30] |
HIRATA Yushi, NIENOW Alvin W, MOORE Iain P T. Estimation of cavern sizes in a shear-thinning plastic fluid agitated by a Rushton turbine based on LDA measurements[J]. Journal of Chemical Engineering of Japan, 1994, 27(2): 235-237.
|
| [31] |
AMANULLAH A, HJORTH S A, NIENOW A W. A new mathematical model to predict cavern diameters in highly shear thinning, power law liquids using axial flow impellers[J]. Chemical Engineering Science, 1998, 53(3): 455-469.
|
| [32] |
许言, 王健, 武永军, 等. 多叶片组合式搅拌桨釜内流动特性和混合性能研究[J]. 化工学报, 2020, 71(11): 4964-4970.
|
|
XU Yan, WANG Jian, WU Yongjun, et al. Study on the flow characteristics and mixing performance of multi-blade combined agitator[J]. CIESC Journal, 2020, 71(11): 4964-4970.
|
| [33] |
PRAJAPATI P, EIN-MOZAFFARI F. CFD Investigation of the mixing of yield-pseudoplastic fluids with anchor impellers[J]. Chemical Engineering & Technology, 2009, 32(8): 1211-1218.
|
| [34] |
伍熙, 姜帅, 杜玮, 等. 双层错位穿流桨槽内流场分析及设计优化[J]. 重庆理工大学学报(自然科学), 2025, 39(2): 195-201.
|
|
WU Xi, JIANG Shuai, DU Wei, et al. Analysis and design optimization of flow field in double-layer dislocated-punched impeller groove[J]. Journal of Chongqing University of Technology (Natural Science), 2025, 39(2): 195-201.
|
| [35] |
贺钰. 非牛顿流体卡波姆的流变特性及流体混合性能数值模拟[D]. 长沙: 中南大学, 2023.
|
|
HE Yu. Study of Carbomer rheological properties of non-Newtonian fluids and numerical simulation offluid mixing properties[D]. Changsha: Central South University, 2023.
|
| [36] |
MONTANTE Giuseppina, Michal MOŠTĚK, JAHODA Milan, et al. CFD simulations and experimental validation of homogenisation curves and mixing time in stirred Newtonian and pseudoplastic liquids[J]. Chemical Engineering Science, 2005, 60(8/9): 2427-2437.
|
| [37] |
LIU Li, BARIGOU Mostafa. Numerical modelling of velocity field and phase distribution in dense monodisperse solid-liquid suspensions under different regimes of agitation: CFD and PEPT experiments[J]. Chemical Engineering Science, 2013, 101: 837-850.
|
| [38] |
FAN Yuewei, WANG Shibo, WANG Hua, et al. Formation mechanism and chaotic reinforcement elimination of the mechanical stirring isolated mixed region[J]. International Journal of Chemical Reactor Engineering, 2021, 19(3): 239-250.
|
| [39] |
HASHIMOTO Shunsuke, ITO Hiroyuki, INOUE Yoshiro. Experimental study on geometric structure of isolated mixing region in impeller agitated vessel[J]. Chemical Engineering Science, 2009, 64(24): 5173-5181.
|