Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (8): 4408-4418.DOI: 10.16085/j.issn.1000-6613.2025-0512
• Reactors and process equipment modeling and simulation • Previous Articles
SHEN Xiankun(
), JIA Zhiyong, LAN Xiaocheng, WANG Tiefeng(
)
Received:2025-04-07
Revised:2025-05-07
Online:2025-09-08
Published:2025-08-25
Contact:
WANG Tiefeng
通讯作者:
王铁峰
作者简介:沈宪琨(1999—),男,博士研究生,研究方向为浆态床反应器的数值模拟。E-mail:sxk21@mails.tsinghua.edu.cn。
基金资助:CLC Number:
SHEN Xiankun, JIA Zhiyong, LAN Xiaocheng, WANG Tiefeng. Progress on CFD-PBM coupled model for slurry reactors[J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4408-4418.
沈宪琨, 贾志勇, 蓝晓程, 王铁峰. CFD-PBM耦合模型用于浆态床反应器的研究进展[J]. 化工进展, 2025, 44(8): 4408-4418.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2025-0512
| [1] | AN Min, GAO Jingqi, WANG Tiankuo, et al. Particle effects on the hydrodynamics in slurry bubble column reactors: A review from multiscale mechanisms[J]. Particuology, 2024, 91: 176-189. |
| [2] | MAHMOUDI Sadra, HLAWITSCHKA Mark W. Effect of solid particles on the slurry bubble columns behavior—A review[J]. ChemBioEng Reviews, 2022, 9(1): 63-92. |
| [3] | GRANDE Giuseppe Actis, ROVERO Giorgio, SICARDI Silvio, et al. Degradation of residual dyes in textile wastewater by ozone: Comparison between mixed and bubble column reactors[J]. The Canadian Journal of Chemical Engineering, 2017, 95(2): 297-306. |
| [4] | WANG Xuqing, WEN Zhaoquan, ZHANG Xibao, et al. Numerical simulation of mass transfer characteristics of gas-liquid bubble columns and an improved mass transfer model[J]. Industrial & Engineering Chemistry Research, 2024, 63(18): 8473-8486. |
| [5] | VARALLO Nicolò, BESAGNI Giorgio, MEREU Riccardo. Computational fluid dynamics simulation of the heterogeneous regime in a large-scale bubble column[J]. Chemical Engineering Science, 2023, 280: 119090. |
| [6] | GUAN Xiaoping, YANG Ning. Bubble size distribution in a bubble column with vertical tube internals: Experiments and CFD-PBM simulations[J]. AIChE Journal, 2022, 68(9): e17755. |
| [7] | YAN Peng, JIN Haibo, HE Guangxiang, et al. Numerical simulation of bubble characteristics in bubble columns with different liquid viscosities and surface tensions using a CFD-PBM coupled model[J]. Chemical Engineering Research and Design, 2020, 154: 47-59. |
| [8] | WANG Tiefeng, WANG Jinfu, JIN Yong. A CFD-PBM coupled model for gas-liquid flows[J]. AIChE Journal, 2006, 52(1): 125-140. |
| [9] | 高一博, 耿琳琳, 王振, 等. 基于欧拉-欧拉方法的气液两相流数值模型发展综述[J]. 力学与实践, 2022, 44(5): 1021-1036. |
| GAO Yibo, GENG Linlin, WANG Zhen, et al. A review of numerical models development for gas-liquid two-phase flow based on Eulerian-Eulerian method[J]. Mechanics in Engineering, 2022, 44(5): 1021-1036. | |
| [10] | 张华海, 王悦琳, 李邦昊, 等. 湍流中气泡破碎建模与实验研究进展[J]. 化工学报, 2021, 72(12): 5936-5954. |
| ZHANG Huahai, WANG Yuelin, LI Banghao, et al. Review of bubble breakup modelling and experimental study in turbulent flow[J]. CIESC Journal, 2021, 72(12): 5936-5954. | |
| [11] | PRINCE Michael J, BLANCH Harvey W. Bubble coalescence and break-up in air-sparged bubble columns[J]. AIChE Journal, 1990, 36(10): 1485-1499. |
| [12] | LUO Hean, SVENDSEN Hallvard F. Theoretical model for drop and bubble breakup in turbulent dispersions[J]. AIChE Journal, 1996, 42(5): 1225-1233. |
| [13] | LEHR F, MILLIES M, MEWES D. Bubble-size distributions and flow fields in bubble columns[J]. AIChE Journal, 2002, 48(11): 2426-2443. |
| [14] | LAAKKONEN Marko, ALOPAEUS Ville, AITTAMAA Juhani. Validation of bubble breakage, coalescence and mass transfer models for gas-liquid dispersion in agitated vessel[J]. Chemical Engineering Science, 2006, 61(1): 218-228. |
| [15] | YAN Peng, JIN Haibo, GAO Xin, et al. Numerical analysis of bubble characteristics in a pressurized bubble column using CFD coupled with a population balance model[J]. Chemical Engineering Science, 2021, 234: 116427. |
| [16] | XING Chutian, WANG Tiefeng, WANG Jinfu. Experimental study and numerical simulation with a coupled CFD-PBM model of the effect of liquid viscosity in a bubble column[J]. Chemical Engineering Science, 2013, 95: 313-322. |
| [17] | PRAJAPATI Ravindra, KOHLI Kirtika, MAITY Samir K. Slurry phase hydrocracking of heavy oil and residue to produce lighter fuels: An experimental review[J]. Fuel, 2021, 288: 119686. |
| [18] | Frank SAUERHÖFER-RODRIGO, Ismael DÍAZ, Manuel RODRÍGUEZ, et al. Modelling of fixed bed and slurry bubble column reactors for Fischer-Tropsch synthesis[J]. Reviews in Chemical Engineering, 2024, 40(2): 151-192. |
| [19] | CHILEKAR Vinit P, VAN DER SCHAAF John, KUSTER Ben F M, et al. Influence of elevated pressure and particle lyophobicity on hydrodynamics and gas-liquid mass transfer in slurry bubble columns[J]. AIChE Journal, 2010, 56(3): 584-596. |
| [20] | HASHEMI Shahrzad, MACCHI Arturo, SERVIO Phillip. Gas-liquid mass transfer in a slurry bubble column operated at gas hydrate forming conditions[J]. Chemical Engineering Science, 2009, 64(16): 3709-3716. |
| [21] | ROLLBUSCH Philipp, BECKER Marc, LUDWIG Martina, et al. Experimental investigation of the influence of column scale, gas density and liquid properties on gas holdup in bubble columns[J]. International Journal of Multiphase Flow, 2015, 75: 88-106. |
| [22] | LAU R, PENG W, VELAZQUEZ-VARGAS L G, et al. Gas-liquid mass transfer in high-pressure bubble columns[J]. Industrial & Engineering Chemistry Research, 2004, 43(5): 1302-1311. |
| [23] | URSEANU M I, GUIT R P M, STANKIEWICZ A, et al. Influence of operating pressure on the gas hold-up in bubble columns for high viscous media[J]. Chemical Engineering Science, 2003, 58(3/4/5/6): 697-704. |
| [24] | JORDAN Uwe, SAXENA Alok K, SCHUMPE Adrian. Dynamic gas disengagement in a high-pressure bubble column[J]. The Canadian Journal of Chemical Engineering, 2003, 81(3/4): 491-498. |
| [25] | KEMOUN Abdenour, Boon Cheng ONG, GUPTA Puneet, et al. Gas holdup in bubble columns at elevated pressure via computed tomography[J]. International Journal of Multiphase Flow, 2001, 27(5): 929-946. |
| [26] | DEWES I, SCHUMPE A. Gas density effect on mass transfer in the slurry bubble column[J]. Chemical Engineering Science, 1997, 52(21/22): 4105-4109. |
| [27] | YANG G Q, FAN L S. Axial liquid mixing in high-pressure bubble columns[J]. AIChE Journal, 2003, 49(8): 1995-2008. |
| [28] | ZHANG Huahai, WANG Yuelin, SAYYAR Ali, et al. Experimental study on breakup of a single bubble in a stirred tank: Effect of gas density and liquid properties[J]. AIChE Journal, 2023, 69(1): e17511. |
| [29] | ZHANG Huahai, FU Shaotong, XIANG Xing, et al. Direct numerical simulations of internal flow inside deformed bubble by phase-field-based lattice Boltzmann method[J]. Chemical Engineering Journal, 2024, 495: 153312. |
| [30] | JIN Haibo, YANG Suohe, ZHANG Wenlong, et al. Numerical simulation of gas-liquid two-phase flow in the N2-acetic acid system under elevated pressures and temperatures based on CFD-PBM model[J]. Chemical Engineering Research and Design, 2024, 204: 20-31. |
| [31] | 张华海, 王铁峰. CFD-PBM耦合模型模拟气液鼓泡床的通用性研究[J]. 化工学报, 2019, 70(2): 487-495. |
| ZHANG Huahai, WANG Tiefeng. Generality of CFD-PBM coupled model for simulations of gas-liquid bubble column[J]. CIESC Journal, 2019, 70(2): 487-495. | |
| [32] | GUAN Xiaoping, YANG Ning. CFD simulation of bubble column hydrodynamics with a novel drag model based on EMMS approach[J]. Chemical Engineering Science, 2021, 243: 116758. |
| [33] | ZANG Hongyang, HU Shanwei, LIU Xinhua, et al. Applying a CFD-PBM approach to modeling the flow behavior in pressurized bubbling fluidized beds[J]. Powder Technology, 2025, 452: 120541. |
| [34] | ZHANG Huahai, YANG Guangyao, SAYYAR Ali, et al. An improved bubble breakup model in turbulent flow[J]. Chemical Engineering Journal, 2020, 386: 121484. |
| [35] | XING Chutian, WANG Tiefeng, GUO Kunyu, et al. A unified theoretical model for breakup of bubbles and droplets in turbulent flows[J]. AIChE Journal, 2015, 61(4): 1391-1403. |
| [36] | WILKINSON Peter M, DIERENDONCK Laurent L. Pressure and gas density effects on bubble break-up and gas hold-up in bubble columns[J]. Chemical Engineering Science, 1990, 45(8): 2309-2315. |
| [37] | WILKINSON Peter M, VAN SCHAYK Antoinet, SPRONKEN Josette P M, et al. The influence of gas density and liquid properties on bubble breakup[J]. Chemical Engineering Science, 1993, 48(7): 1213-1226. |
| [38] | LETZEL Martin H, SCHOUTEN Jaap C, VAN DEN BLEEK Cor M, et al. Effect of gas density on large-bubble holdup in bubble column reactors[J]. AIChE Journal, 1998, 44(10): 2333-2336. |
| [39] | ZHANG Huahai, SAYYAR Ali, WANG Yuelin, et al. Generality of the CFD-PBM coupled model for bubble column simulation[J]. Chemical Engineering Science, 2020, 219: 115514. |
| [40] | LAUPSIEN David, LE MEN Claude, COCKX Arnaud, et al. Effects of liquid viscosity and bubble size distribution on bubble plume hydrodynamics[J]. Chemical Engineering Research and Design, 2022, 180: 451-469. |
| [41] | GAO Deyang, LI Xue, HOU Baolin, et al. Study of bubble behavior in high-viscosity liquid in a pseudo-2D column using high-speed imaging[J]. Chemical Engineering Science, 2022, 252: 117532. |
| [42] | ZHANG Huahai, WANG Yuelin, SAYYAR Ali, et al. A CFD-PBM coupled model under entire turbulent spectrum for simulating a bubble column with highly viscous media[J]. AIChE Journal, 2023, 69(1): e17473. |
| [43] | GRUND G, SCHUMPE A, DECKWER W D. Gas-liquid mass transfer in a bubble column with organic liquids[J]. Chemical Engineering Science, 1992, 47(13/14): 3509-3516. |
| [44] | Manuel GÖTZ, LEFEBVRE Jonathan, Friedemann MÖRS, et al. Hydrodynamics of organic and ionic liquids in a slurry bubble column reactor operated at elevated temperatures[J]. Chemical Engineering Journal, 2016, 286: 348-360. |
| [45] | VANDU C O, KRISHNA R. Volumetric mass transfer coefficients in slurry bubble columns operating in the churn-turbulent flow regime[J]. Chemical Engineering and Processing: Process Intensification, 2004, 43(8): 987-995. |
| [46] | LAKHDISSI El Mahdi, SOLEIMANI Iman, Christophe GUY, et al. Simultaneous effect of particle size and solid concentration on the hydrodynamics of slurry bubble column reactors[J]. AIChE Journal, 2020, 66(2): e16813. |
| [47] | LI H, PRAKASH A, MARGARITIS A, et al. Effects of micron-sized particles on hydrodynamics and local heat transfer in a slurry bubble column[J]. Powder Technology, 2003, 133(1/2/3): 171-184. |
| [48] | GANDHI B, PRAKASH A, BERGOUGNOU M A. Hydrodynamic behavior of slurry bubble column at high solids concentrations[J]. Powder Technology, 1999, 103(2): 80-94. |
| [49] | MENA P C, RUZICKA M C, ROCHA F A, et al. Effect of solids on homogeneous-heterogeneous flow regime transition in bubble columns[J]. Chemical Engineering Science, 2005, 60(22): 6013-6026. |
| [50] | OJIMA Shimpei, SASAKI Shohei, HAYASHI Kosuke, et al. Effects of particle diameter on bubble coalescence in a slurry bubble column[J]. Journal of Chemical Engineering of Japan, 2015, 48(3): 181-189. |
| [51] | LI Weiling, ZHOU Genfu, SUN Jian, et al. Impacts of particle properties on gas holdup under four flow regimes in three-phase bubble columns[J]. Chemical Engineering & Technology, 2021, 44(12): 2347-2354. |
| [52] | WANG Haozheng, DUAN Xiaoxia, FENG Xin, et al. Investigation of the gas-liquid-solid stirred tank by using the intrusive image-based method[J]. Industrial & Engineering Chemistry Research, 2023, 62(47): 20436-20448. |
| [53] | LIAO Yixiang, WANG Qingdong, CALISKAN Utkan, et al. Investigation of particle effects on bubble coalescence in slurry with a chimera MP-PIC and VOF coupled method[J]. Chemical Engineering Science, 2023, 265: 118174. |
| [54] | CHEN Yekui, LI Chaojie, YU Zhixin, et al. Effect of solid loading and particle size on bubble behavior and flow field structure in slurry bubble column[J]. Physics of Fluids, 2024, 36(11): 113344. |
| [55] | OJIMA Shimpei, HAYASHI Kosuke, TOMIYAMA Akio. Effects of hydrophilic particles on bubbly flow in slurry bubble column[J]. International Journal of Multiphase Flow, 2014, 58: 154-167. |
| [56] | WANG Peipei, CILLIERS Jan J, NEETHLING Stephen J, et al. The behavior of rising bubbles covered by particles[J]. Chemical Engineering Journal, 2019, 365: 111-120. |
| [57] | LI Weiling, ZHONG Wenqi. CFD simulation of hydrodynamics of gas-liquid-solid three-phase bubble column[J]. Powder Technology, 2015, 286: 766-788. |
| [58] | SCHNEIDERS Lennart, MEINKE Matthias, Wolfgang SCHRÖDER. Direct particle-fluid simulation of Kolmogorov-length-scale size particles in decaying isotropic turbulence[J]. Journal of Fluid Mechanics, 2017, 819: 188-227. |
| [59] | SCHNEIDERS Lennart, Konstantin FRÖHLICH, MEINKE Matthias, et al. The decay of isotropic turbulence carrying non-spherical finite-size particles[J]. Journal of Fluid Mechanics, 2019, 875: 520-542. |
| [60] | SU Wu, SHI Xiaogang, WU Yingya, et al. Population balance model simulation of the particle effect on flow hydrodynamics in slurry beds[J]. Chemical Engineering & Technology, 2019, 42(4): 761-768. |
| [61] | AN Min, GUAN Xiaoping, YANG Ning. Modeling the effects of solid particles in CFD-PBM simulation of slurry bubble columns[J]. Chemical Engineering Science, 2020, 223: 115743. |
| [62] | ZHANG Huahai, GUO Zhongshan, WANG Yuelin, et al. Effect of particles on hydrodynamics and mass transfer in a slurry bubble column: Correlation of experimental data[J]. AIChE Journal, 2023, 69(3): e17843. |
| [63] | SHEN Xiankun, ZHANG Huahai, JIA Zhiyong, et al. Numerical simulations of particle concentration and size effects in a slurry bubble column with a CFD-PBM coupled model[J]. AIChE Journal, 2024, 70(11): e18518. |
| [1] | YANG Wenming, XIE Linsheng, WANG Yu, MA Yulu, LI Guo. Application of SPH-DEM coupling simulation method in meshing twin-screw extruder [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3748-3756. |
| [2] | WEI Fangxi, LIU Qiannan, WU Yapin, WU Jingli, SONG Wenqing, TANG Yizhen, JIANG Bo. Asymmetric cathodic electrochemical water softening with zero electrode space: performance optimization and mechanism [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3642-3650. |
| [3] | SONG Yiqi, LI Xue, YE Mao, LIU Zhongmin. Particle-resolved lattice Boltzmann simulations for sedimentation of catalyst particles with endothermic reaction [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2984-2996. |
| [4] | HUANG Linbin, LI Tianchi, LI Can, LI Ning, WENG Chunsheng. Multi-parameter extraction method for particle-containing droplets based on DeepViT and rainbow scattering [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1859-1866. |
| [5] | GUO Wei, LIU Chuanping, TONG Lige, WANG Li. Novel thermal diffusion measurement technique for enhanced monitoring of gas-liquid multiphase flows [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1781-1785. |
| [6] | GAO Jian, ZHOU Xiangjun, CHU Huaqiang. Characterization of droplet bag-stamen breakup in shear flow [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1898-1906. |
| [7] | LI Sheng, CHEN Yazhou, JIANG Wei, PENG Jie, FAN Caiwei, SHAO Meng. Numerical simulation of proton exchange membrane fuel cell catalyst ink mixing process [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4800-4809. |
| [8] | ZHAO Jilong, GUO Yuxiang, CHEN Hongxia, YUAN Dazhong, DU Xiaoze. Experimental and numerical simulation on heat transfer characteristics of vertical cesium heat pipes [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1711-1719. |
| [9] | YU Yanfang, SHI Bowen, MENG Huibo, DING Pengcheng, YAO Yunjuan. Characteristics analysis of gas solid two-phase flow in pneumatic conveying based on CFD-DEM algorithm [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1133-1144. |
| [10] | WANG Chao, CAO Hui, MA Guoji, YE Jiamin, JI Xueling. EMD-based electrostatic detection of screw conveyor blade motion [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 752-759. |
| [11] | CHEN Junxian, LIU Zhen, JIAO Wenlei, ZHANG Tianyu, LYU Jiameng, JI Zhongli. Measurement method of liquid drop concentration in natural gas pipeline based on microwave resonance principle [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 734-742. |
| [12] | SU Qian, XIA Zhifei, LIU Zhenxing. Ultrasound recognition method for flow patterns in oil-gas-water slug flow based on RBF neural network [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 628-636. |
| [13] | YIN Rui, YIN Shaowu, YANG Likun, TONG Lige, LIU Chuanping, WANG Li. Progress of chip-level indirect liquid cooling technology and enhanced heat transfer in data centers [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6010-6030. |
| [14] | LIU Wenchen, HUANG Qiyu, XIE Yan, LYU Yang, WANG Yijie, XU Zhenkang, HAN Jipu. Research progress of low-temperature gathering and transportation of high water cut crude oil [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5427-5440. |
| [15] | WU Yan, LI Bin, JU Mingdong, XIANG Wei, WANG Hai, WANG Zhentao, WANG Junfeng, WANG Zhenbo. Strengthening mechanism of oil droplet displacement under the nano-confined shearing flow field: A molecular dynamics study [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5393-5402. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |