Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (5): 2898-2906.DOI: 10.16085/j.issn.1000-6613.2025-0211
• Chemical processes emission reduction • Previous Articles
SUN Binhan(
), ZHANG Xiancheng, TU Shantung(
)
Received:2025-02-17
Revised:2025-03-16
Online:2025-05-20
Published:2025-05-25
Contact:
TU Shantung
通讯作者:
涂善东
作者简介:孙彬涵(1990—),男,教授,研究方向为氢能装备安全与金属材料。E-mail:binhan.sun@ecust.edu.cn。
基金资助:CLC Number:
SUN Binhan, ZHANG Xiancheng, TU Shantung. Towards the intrinsic safety of hydrogen energy utilization: Progress and challenges in the study of hydrogen-induced damage[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2898-2906.
孙彬涵, 张显程, 涂善东. 面向氢能本质安全利用——氢致损伤研究进展与挑战[J]. 化工进展, 2025, 44(5): 2898-2906.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2025-0211
| 1 | 郑津洋, 刘自亮, 花争立, 等. 氢安全研究现状及面临的挑战[J]. 安全与环境学报, 2020, 20(1): 106-115. |
| ZHENG Jinyang, LIU Ziliang, HUA Zhengli, et al. Research status-in-situ and key challenges in hydrogen safety[J]. Journal of Safety and Environment, 2020, 20(1): 106-115. | |
| 2 | 张盛, 郑津洋, 戴剑锋, 王昕, 李浩然. 可再生能源大规模制氢及储氢系统研究进展[J]. 太阳能学报, 2024, 45(1): 457-465. |
| ZHANG Sheng, ZHENG Jinyang, DAI Jianfeng, et al. Research progress on renewable energy system coupled with large-scale hydrogen production and storage[J]. Acta Energiae Solaris Sinica, 2024, 45(1): 457-465. | |
| 3 | HUANG Ying, ZHOU Yi, ZHONG Ruohan, et al. Hydrogen energy development in China: Potential assessment and policy implications[J]. International Journal of Hydrogen Energy, 2024, 49: 659-669. |
| 4 | ZOU Caineng, LI Jianming, ZHANG Xi, et al. Industrial status, technological progress, challenges, and prospects of hydrogen energy[J]. Natural Gas Industry B, 2022, 9(5): 427-447. |
| 5 | 韩笑, 张兴华, 闫华光, 等. 全球氢能产业政策现状与前景展望[J]. 电力信息与通信技术, 2021, 19(12): 27-34. |
| HAN Xiao, ZHANG Xinghua, YAN Huaguang, et al. Current situation and prospect of global hydrogen energy industry policy[J]. Electric Power Information and Communication Technology, 2021, 19(12): 27-34. | |
| 6 | SAMPSON Joanna. Hydrogen insights 2024[EB/OL].Hydrogen Council. (2024-09-17). . |
| 7 | 曹湘洪, 魏志强. 氢能利用安全技术研究与标准体系建设思考[J]. 中国工程科学, 2020, 22(5): 144-151. |
| CAO Xianghong, WEI Zhiqiang. Technologies for the safe use of hydrogen and construction of the safety standards system[J]. Strategic Study of CAE, 2020, 22(5): 144-151. | |
| 8 | SUN Binhan, ZHAO Huan, DONG Xizhen, et al. Current challenges in the utilization of hydrogen energy—A focused review on the issue of hydrogen-induced damage and embrittlement[J]. Advances in Applied Energy, 2024, 14: 100168. |
| 9 | SUN Binhan, WANG Dong, LU Xu, et al. Current challenges and opportunities toward understanding hydrogen embrittlement mechanisms in advanced high-strength steels: A review[J]. Acta Metallurgica Sinica (English Letters), 2021, 34: 741-754. |
| 10 | 石荣建, 乔利杰, 庞晓露. 氢加剧腐蚀的研究以及高强韧抗氢钢的开发[C]//中国金属学会. 第十三届中国钢铁年会论文集(摘要)——大会特邀报告&分会场特邀报告. 北京:2022:89-90. |
| SHI Rongjian, QIAO Lijie, PANG Xiaolu. Fundamental principles of hydrogen exacerbated metal corrosion and atomic-scale investigation of hydrogen embrittlement resistant high-strength steels[C]//Chinese Society for Metals. Proceedings of the 13th Annual Conference of China Iron and Steel (Abstract)—Invited Conference Presentations & Sessions Invited Presentations, 2022: 89-90. | |
| 11 | JOHNSON William H. On some remarkable changes produced in iron and steel by the action of hydrogen and acids[J]. Nature, 1875, 11(281): 393-393. |
| 12 | INTERRANTE C, PRESSOUYRE G, Creusot-Loire. Current solutions to hydrogen problems in steels: Proceedings of the first international conference on current solutions to hydrogen problems in steels[C]. Washington DC, 1982. |
| 13 | 任学冲, 褚武扬, 李金许, 等. 车轮钢中的白点及其断口形貌研究[J]. 金属学报, 2006, 42(3): 273-279. |
| REN Xuechong, CHU Wuyang, LI Jinxu, et al. Research of flaking and its fractography in a wheel steel[J]. Acta Metallurgica Sinica, 2006, 42(3): 273-279. | |
| 14 | 王佳, 刘晓勇, 高灵清, 等. 钛合金氢致损伤机理的研究现状[J]. 材料保护, 2020, 53(11): 98-105. |
| WANG Jia, LIU Xiaoyong, GAO Lingqing, et al. A review on mechanisms of hydrogen embrittlement of titanium alloys[J]. Materials Protection, 2020, 53(11): 98-105. | |
| 15 | POORHAYDARI Kioumars. A comprehensive examination of high-temperature hydrogen attack—A review of over a century of investigations[J]. Journal of Materials Engineering and Performance, 2021, 30(11): 7875-7908. |
| 16 | 陈炜, 陈学东, 顾望平, 等. 加氢装置高温氢损伤机理与风险分析[J]. 腐蚀与防护, 2019, 40(8): 623-626. |
| CHEN Wei, CHEN Xuedong, GU Wangping, et al. Mechanism of high temperature hydrogen damage and risk analysis to hydrogenation units[J]. Corrosion & Protection, 2019, 40(8): 623-626. | |
| 17 | DUTTON R, NUTTALL K, PULS M P, et al. Mechanisms of hydrogen induced delayed cracking in hydride forming materials[J]. Metallurgical Transactions A, 1977, 8(10): 1553-1562. |
| 18 | SUN Binhan, KRIEGER Waldemar, ROHWERDER Michael, et al. Dependence of hydrogen embrittlement mechanisms on microstructure-driven hydrogen distribution in medium Mn steels[J]. Acta Materialia, 2020, 183: 313-328. |
| 19 | MARTIN May L, DADFARNIA Mohsen, NAGAO Akihide, et al. Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials[J]. Acta Materialia, 2019, 165: 734-750. |
| 20 | LYNCH Stan. Mechanistic and fractographic aspects of stress corrosion cracking[J]. Corrosion Reviews, 2012, 30(3/4): 63-104. |
| 21 | TAKAHASHI Yoshimasa, KONDO Hikaru, ASANO Ryo, et al. Direct evaluation of grain boundary hydrogen embrittlement: A micro-mechanical approach[J]. Materials Science and Engineering: A, 2016, 661: 211-216. |
| 22 | NEERAJ T, SRINIVASAN R, LI Ju. Hydrogen embrittlement of ferritic steels: Observations on deformation microstructure, nanoscale dimples and failure by nanovoiding[J]. Acta Materialia, 2012, 60(13/14): 5160-5171. |
| 23 | LYNCH S P. Mechanisms and kinetics of environmentally assisted cracking: Current status, issues, and suggestions for further work[J]. Metallurgical and Materials Transactions A, 2013, 44(3): 1209-1229. |
| 24 | LYNCH S P. 2-Hydrogen embrittlement (HE) phenomena and mechanisms[M]//Raja V S, Shoji Tetsuo. Stress Corrosion Cracking. Cambridge: Woodhead Publishing, 2011: 90-130. |
| 25 | DONG Xizhen, WANG Dong, Prithiv THOUDDEN-SUKUMAR, et al. Hydrogen-associated decohesion and localized plasticity in a high-Mn and high-Al two-phase lightweight steel[J]. Acta Materialia, 2022, 239: 118296. |
| 26 | 陈瑞, 郑津洋, 徐平, 等. 金属材料常温高压氢脆研究进展[J]. 太阳能学报, 2008, 29(4): 502-508. |
| CHEN Rui, ZHENG Jinyang, XU Ping, et al. Hydrogen embrittlement of metallic materials in high-pressure hydrogen at normal temperature[J]. Acta Energiae Solaris Sinica, 2008, 29(4): 502-508. | |
| 27 | 郑津洋, 周池楼, 徐平, 等. 高压氢环境材料耐久性测试装置的研究进展[J]. 太阳能学报, 2013, 34(8): 1477-1483. |
| ZHENG Jinyang, ZHOU Chilou, XU Ping, et al. R & d of materials testing equipment in high-pressure hydrogen[J]. Acta Energiae Solaris Sinica, 2013, 34(8): 1477-1483. | |
| 28 | YANG M Z, LUO J L, YANG Q, et al. Effects of hydrogen on semiconductivity of passive films and corrosion behavior of 310 stainless steel[J]. Journal of the Electrochemical Society, 1999, 146(6): 2107-2112. |
| 29 | CHEN Lin, XIONG Xilin, TAO Xuan, et al. Effect of dislocation cell walls on hydrogen adsorption, hydrogen trapping and hydrogen embrittlement resistance[J]. Corrosion Science, 2020, 166: 108428. |
| 30 | ZHENG Jinyang, LIU Xianxin, XU Ping, et al. Development of high pressure gaseous hydrogen storage technologies[J]. International journal of hydrogen energy, 2012, 37(1): 1048-1057. |
| 31 | CHEN Xuedong, FAN Zhichao, XU Shuangqing, et al. Technological progress on safety assurance for hydrogen storage and transportation pressure equipments in China[C]//Volume 1: Codes and Standards. Las Vegas, Nevada, USA: American Society of Mechanical Engineers, 2022: V001T01A071. |
| 32 | FENG Yufeng, WU Yingzhe, KUANG Jiyong, et al. Development of material mechanical properties testing platform for liquid hydrogen temperature zone[C]//Volume 4B: Materials and Fabrication. Las Vegas, Nevada, USA: American Society of Mechanical Engineers, 2022: V04BT06A029. |
| 33 | KOYAMA Motomichi, ROHWERDER Michael, TASAN Cemal Cem, et al. Recent progress in microstructural hydrogen mapping in steels: Quantification, kinetic analysis, and multi-scale characterisation[J]. Materials Science and Technology, 2017, 33(13): 1481-1496. |
| 34 | XIE D, LI S, LI M, et al. Hydrogenated vacancies lock dislocations in aluminium[J]. Nature Communications, 2016, 7: 13341. |
| 35 | SUN Binhan, DONG Xizhen, WEN Jianfeng, et al. Microstructure design strategies to mitigate hydrogen embrittlement in metallic materials[J]. Fatigue & Fracture of Engineering Materials & Structures, 2023, 46(8): 3060-3076. |
| 36 | TOLSTOLUTSKA G D, AZARENKOV M O, BILOUS V A, et al. Hydrogen barrier coatings and their permeation resistance[J]. Problems of Atomic Science and Technology, 2024: 100-117. |
| 37 | CHEN Y S, LU H, LIANG J, et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates[J]. Science, 2020, 367(6474): 171-175. |
| 38 | SUN B, LU W, GAULT B, et al. Chemical heterogeneity enhances hydrogen resistance in high-strength steels[J]. Nature Materials, 2021, 20(12): 1629-1634. |
| 39 | KOYAMA Motomichi, ICHII Kenshiro, TSUZAKI Kaneaki. Grain refinement effect on hydrogen embrittlement resistance of an equiatomic CoCrFeMnNi high-entropy alloy[J]. International Journal of Hydrogen Energy, 2019, 44(31): 17163-17167. |
| 40 | BECHTLE S, KUMAR M, SOMERDAY B P, et al. Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials[J]. Acta Materialia, 2009, 57(14): 4148-4157. |
| 41 | CHO Hyung-Jun, CHO Yeonggeun, GWON Hojun, et al. Effects of Ni/Cu replacement on improvement of tensile and hydrogen-embrittlement properties in austenitic stainless steels[J]. Acta Materialia, 2022, 235: 118093. |
| 42 | KIM Dong-Han, MOALLEMI Mohammad, KIM Kyung-Shik, et al. Hydrogen embrittlement micromechanisms and direct observations of hydrogen transportation by dislocations during deformation in a carbon-doped medium entropy alloy[J]. Journal of Materials Research and Technology, 2022, 20: 18-25. |
| 43 | DING C D, JIAO Z B, LUAN J H, et al. Suppressing hydrogen embrittlement of a CrCoNi medium-entropy alloy by triggering co-segregation of carbon, boron, and Cr[J]. Corrosion Science, 2024, 236: 112232. |
| 44 | GONG Xujie, SUN Ruize, LEI Ruichao, et al. Iterative multi-objective design of hydrogen embrittlement resistant high-strength steels using Bayesian optimization[J]. Corrosion Science, 2024, 231: 111953. |
| [1] | WANG Bo, WANG Bin, GONG Xiang, YANG Fusheng, FANG Tao. Enhancing dehydrogenation performance of liquid organic hydrogen carriers based on reactor design: Research progress [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 189-208. |
| [2] | LIANG Ximei, FEI Hua, LI Yuanlin, YONG Fan, GUO Mengqian, ZHOU Jiahong. Preparation and thermal properties of lauric acid-based binary low compatible energy storage materials [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3256-3267. |
| [3] | ZHANG Bao, WANG Peng, AN Yongpan, LYU Ping, JIANG Jianliang. Design and experiment of fuel cell systems for marine application [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2554-2567. |
| [4] | HUANG Sheng, YANG Zhenli, LI Zhenyu. Analysis of optimization path of developing China's hydrogen industry [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 882-893. |
| [5] | SUN Xudong, ZHAO Yuying, LI Shirui, WANG Qi, LI Xiaojian, ZHANG Bo. Textual quantitative analysis on China’s local hydrogen energy development policies [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3478-3488. |
| [6] | SUN Hui, MENG Xianghai, WEI Jinghai, ZHOU Hongjun, XU Chunming. New scene for ammonia synthesis by green hydrogen [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1098-1102. |
| [7] | LI Weidong, LI Yilong, TENG Lin, YIN Pengbo, HUANG Xin, LI Jiaqing, LUO Yu, JIANG Lilong. Research progress on ammonia energy technology and economy under "carbon emission peak" and "carbon neutrality" targets [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6226-6238. |
| [8] | YU Feng. Reflection and prospects on N1 chemistry [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6136-6140. |
| [9] | WANG Hongxia, XU Wanyi, ZHANG Zaoxiao. Development status and suggestions of green hydrogen energy produced by water electrolysis from renewable energy [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 118-131. |
| [10] | ZHOU Hongjun, ZHOU Ying, XU Chunming. Exploration of the CO2 conversion under China’s carbon neutrality goal [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3381-3385. |
| [11] | ZHOU Hongjun, ZHOU Ying, XU Chunming. Exploration of refining and chemical integration under China’s dual-carbon target [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2226-2230. |
| [12] | CHEN Weifeng, SHANG Juan, XING Baihui, WEI Haotian, GU Chaohua, HUA Zhengli. Discussion on 10% as a safe ratio of hydrogen mixing into natural gas grids [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1487-1493. |
| [13] | LI Haoyang, ZHANG Wei, LI Xiaosen, XU Chungang. Research process of hydrate-based hydrogen storage [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6285-6294. |
| [14] | ZHANG Zhenyang, MIAO Cong, WANG Feng, LAN Yuqi, AN Gang, YANG Shenyin. Analysis of present status and future technical route on large-scale hydrogen liquefaction plant [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6261-6274. |
| [15] | YUE Guojun, LIN Hailong, PENG Yuanting, MIN Jian, WANG Meng, XIONG Qiang. Future green hydrogen energy from biomass [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4678-4684. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |