Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (5): 2421-2428.DOI: 10.16085/j.issn.1000-6613.2024-1846
• Synthetic biomanufacturing • Previous Articles
WANG Wanze1(
), DING Jun1, YAN Xu1, CHEN Guoqiang1,2(
)
Received:2024-11-11
Revised:2025-02-06
Online:2025-05-20
Published:2025-05-25
Contact:
CHEN Guoqiang
通讯作者:
陈国强
作者简介:王婉泽(1999—),女, 博士研究生, 研究方向为代谢工程改造。E-mail:wang-wz22@mails.tsinghua.edu.cn。
基金资助:CLC Number:
WANG Wanze, DING Jun, YAN Xu, CHEN Guoqiang. Renewable source utilization and biomanufacturing based on halophilic chassis[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2421-2428.
王婉泽, 丁军, 闫煦, 陈国强. 基于嗜盐底盘的可再生资源利用与生物制造[J]. 化工进展, 2025, 44(5): 2421-2428.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1846
| 菌种 | 碳源 | 产物 | 参考文献 |
|---|---|---|---|
| 盐单胞菌 | 葡萄糖酸废水 | P34HB | [ |
| 盐单胞菌 | 乙酸 | PHB | [ |
| 盐单胞菌 | 餐厨废弃物 | PHB | [ |
| 盐单胞菌 | 淀粉 | PHB | [ |
| 盐单胞菌 | 木糖 | PHB | [ |
| 盐单胞菌 | 1,3-丙二醇 | 3-羟基丙酸(3-HP) | [ |
| 地中海富盐菌 | 酒糟 | PHBV | [ |
| 地中海富盐菌 | 乳清水解物 | 聚(3-羟基丁酸- 共-3-羟基戊酸)酯 [P(3HB-co-3HV)] | [ |
| 大肠杆菌 | CO2和甲酸 | PHB | [ |
| 大肠杆菌 | 木糖和甘油 | PHB | [ |
| 大肠杆菌 | 牛乳清粉 | PHB | [ |
| 菌种 | 碳源 | 产物 | 参考文献 |
|---|---|---|---|
| 盐单胞菌 | 葡萄糖酸废水 | P34HB | [ |
| 盐单胞菌 | 乙酸 | PHB | [ |
| 盐单胞菌 | 餐厨废弃物 | PHB | [ |
| 盐单胞菌 | 淀粉 | PHB | [ |
| 盐单胞菌 | 木糖 | PHB | [ |
| 盐单胞菌 | 1,3-丙二醇 | 3-羟基丙酸(3-HP) | [ |
| 地中海富盐菌 | 酒糟 | PHBV | [ |
| 地中海富盐菌 | 乳清水解物 | 聚(3-羟基丁酸- 共-3-羟基戊酸)酯 [P(3HB-co-3HV)] | [ |
| 大肠杆菌 | CO2和甲酸 | PHB | [ |
| 大肠杆菌 | 木糖和甘油 | PHB | [ |
| 大肠杆菌 | 牛乳清粉 | PHB | [ |
| 1 | ZHENG Jiajia, Sangwon SUH. Strategies to reduce the global carbon footprint of plastics[J]. Nature Climate Change, 2019, 9: 374-378. |
| 2 | SUDESH K, ABE H, DOI Y. Synthesis, structure and properties of polyhydroxyalkanoates: Biological polyesters[J]. Progress in Polymer Science, 2000, 25(10): 1503-1555. |
| 3 | CHEN Guo-Qiang, JIANG Xiao-Ran. Next generation industrial biotechnology based on extremophilic bacteria[J]. Current Opinion in Biotechnology, 2018, 50: 94-100. |
| 4 | YU Linping, WU Fuqing, CHEN Guoqiang. Next-generation industrial biotechnology-transforming the current industrial biotechnology into competitive processes[J]. Biotechnology Journal, 2019, 14(9): 1800437. |
| 5 | OREN Aharon. Microbial life at high salt concentrations: Phylogenetic and metabolic diversity[J]. Saline Systems, 2008, 4: 2. |
| 6 | OLLIVIER Bernard, CAUMETTE Pierre, GARCIA Jean-Louis, et al. Anaerobic bacteria from hypersaline environments[J]. Microbiological Reviews, 1994, 58(1): 27-38. |
| 7 | TAN Dan, XUE Yuan-Sheng, AIBAIDULA Gulsimay, et al. Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01[J]. Bioresource Technology, 2011, 102(17): 8130-8136. |
| 8 | LEE Sang Yup. Bacterial polyhydroxyalkanoates[J]. Biotechnology and Bioengineering, 1996, 49(1): 1-14. |
| 9 | MENG Dechuan, SHEN Rui, YAO Hui, et al. Engineering the diversity of polyesters[J]. Current Opinion in Biotechnology, 2014, 29: 24-33. |
| 10 | CHOI Sol, SONG Chan Woo, SHIN Jae Ho, et al. Biorefineries for the production of top building block chemicals and their derivatives[J]. Metabolic Engineering, 2015, 28: 223-239. |
| 11 | ZHANG Xu, LIN Yina, WU Qiong, et al. Synthetic biology and genome-editing tools for improving PHA metabolic engineering[J]. Trends in Biotechnology, 2020, 38(7): 689-700. |
| 12 | SHEN Rui, YIN Jin, YE Jianwen, et al. Promoter engineering for enhanced P(3HB-co-4HB) production by Halomonas bluephagenesis [J]. ACS Synthetic Biology, 2018, 7(8): 1897-1906. |
| 13 | ROBINSON Christopher J, CARBONELL Pablo, JERVIS Adrian J, et al. Rapid prototyping of microbial production strains for the biomanufacture of potential materials monomers[J]. Metabolic Engineering, 2020, 60: 168-182. |
| 14 | DU Hetong, ZHAO Yiqing, WU Fuqing, et al. Engineering Halomonas bluephagenesis for L-threonine production[J]. Metabolic Engineering, 2020, 60: 119-127. |
| 15 | MA Hong, ZHAO Yiqing, HUANG Wuzhe, et al. Rational flux-tuning of Halomonas bluephagenesis for co-production of bioplastic PHB and ectoine[J]. Nature Communications, 2020, 11(1): 3313. |
| 16 | CLONEY Ross. Automating genetic circuit design[J]. Nature Reviews Genetics, 2016, 17: 314-315. |
| 17 | LI Han, LIAO James C. A synthetic anhydrotetracycline-controllable gene expression system in Ralstonia eutropha H16[J]. ACS Synthetic Biology, 2015, 4(2): 101-106. |
| 18 | ZHAO Han, ZHANG Haoqian M, CHEN Xiangbin, et al. Novel T7-like expression systems used for halomonas[J]. Metabolic Engineering, 2017, 39: 128-140. |
| 19 | YE Jianwen, CHEN Guoqiang. Halomonas as a chassis[J]. Essays in Biochemistry, 2021, 65(2): 393-403. |
| 20 | SHEN Rui, YIN Jin, YE Jianwen, et al. Promoter engineering for enhanced P(3HB-co-4HB) production by Halomonas bluephagenesis [J]. ACS Synthetic Biology, 2018, 7(8): 1897-1906. |
| 21 | YE Jianwen, HU Dingkai, CHE Xuemei, et al. Engineering of Halomonas bluephagenesis for low cost production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from glucose[J]. Metabolic Engineering, 2018, 47: 143-152. |
| 22 | JIANG Xiao-Ran, YAO Zhi-Hao, CHEN Guo-Qiang. Controlling cell volume for efficient PHB production by Halomonas [J]. Metabolic Engineering, 2017, 44: 30-37. |
| 23 | REN Kang, ZHAO Yiqing, CHEN Guoqiang, et al. Construction of a stable expression system based on the endogenous hbpB/hbpC toxin-antitoxin system of Halomonas bluephagenesis [J]. ACS Synthetic Biology, 2024, 13(1): 61-67. |
| 24 | ZHENG Shuang, ZHANG Zonghao, JIANG Peng, et al. A self-stimulating system based on a polyhydroxyalkanoates coupled induction mechanism and its applications for Halomonas[J]. Chemical Engineering Journal, 2024, 489: 151413. |
| 25 | YE Jianwen, HUANG Wuzhe, WANG Dongsheng, et al. Pilot scale-up of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) production by Halomonas bluephagenesis via cell growth adapted optimization process[J]. Biotechnology Journal, 2018, 13(5): 1800074. |
| 26 | ZHANG Jing, JIN Biao, FU Jing, et al. Adaptive laboratory evolution of Halomonas bluephagenesis enhances acetate tolerance and utilization to produce poly(3-hydroxybutyrate)[J]. Molecules, 2022, 27(9): 3022. |
| 27 | JI Mengke, ZHENG Taoran, WANG Ziyu, et al. PHB production from food waste hydrolysates by Halomonas bluephagenesis harboring PHB operon linked with an essential gene[J]. Metabolic Engineering, 2023, 77: 12-20. |
| 28 | LIN Yina, GUAN Yuying, DONG Xu, et al. Engineering Halomonas bluephagenesis as a chassis for bioproduction from starch[J]. Metabolic Engineering, 2021, 64: 134-145. |
| 29 | TAN Biwei, ZHENG Yuanmin, YAN Haojie, et al. Metabolic engineering of Halomonas bluephagenesis to metabolize xylose for poly-3-hydroxybutyrate production[J]. Biochemical Engineering Journal, 2022, 187: 108623. |
| 30 | JIANG Xiaoran, YAN Xu, YU Linping, et al. Hyperproduction of 3-hydroxypropionate by Halomonas bluephagenesis [J]. Nature Communications, 2021, 12(1): 1513. |
| 31 | BHATTACHARYYA Anirban, PRAMANIK Arnab, MAJI Sudipta Kumar, et al. Utilization of vinasse for production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei [J]. AMB Express, 2012, 2(1): 34. |
| 32 | PAIS Joana, SERAFIM Luísa S, FREITAS Filomena, et al. Conversion of cheese whey into poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Haloferax mediterranei [J]. New Biotechnology, 2016, 33(1): 224-230. |
| 33 | FEDOROVA Daria, Roee BEN-NISSAN, MILSHTEIN Eliya, et al. Demonstration of bioplastic production from CO2 and formate using the reductive glycine pathway in E. coli[EB/OL]. 2024, |
| 34 | ZHENG Yangyang, YUAN Qianqian, LUO Hao, et al. Engineering NOG-pathway in Escherichia coli for poly-(3-hydroxybutyrate) production from low cost carbon sources[J]. Bioengineered, 2018, 9(1): 209-213. |
| 35 | FAVARO Lorenzo, BASAGLIA Marina, CASELLA Sergio. Improving polyhydroxyalkanoate production from inexpensive carbon sources by genetic approaches: A review[J]. Biofuels, Bioproducts and Biorefining, 2019, 13(1): 208-227. |
| 36 | LING Chen, PEABODY George L, Davinia SALVACHÚA, et al. Muconic acid production from glucose and xylose in Pseudomonas putida via evolution and metabolic engineering[J]. Nature Communications, 2022, 13(1): 4925. |
| 37 | LIU Yuzhong, HUO Kai, TAN Biwei, et al. Metabolic engineering of Halomonas bluephagenesis for the production of ethylene glycol and glycolate from xylose[J]. Journal of Biotechnology, 2024, 396: 36-40. |
| 38 | DE CLERCQ Djavan, WEN Zongguo, FAN Fei, et al. Biomethane production potential from restaurant food waste in megacities and project level-bottlenecks: A case study in Beijing[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 1676-1685. |
| 39 | XU Fuqing, LI Yangyang, GE Xumeng, et al. Anaerobic digestion of food waste-Challenges and opportunities[J]. Bioresource Technology, 2018, 247: 1047-1058. |
| 40 | LIU Hailong, HAN Jing, LIU Xiaoqing, et al. Development of pyrF-based gene knockout systems for genome-wide manipulation of the archaea Haloferax mediterranei and Haloarcula hispanica [J]. Journal of Genetics and Genomics, 2011, 38(6): 261-269. |
| 41 | LI Jun, ZONG Hong, ZHUGE Bin, et al. Immobilization of Acetobacter sp. CGMCC 8142 for efficient biocatalysis of 1,3-propanediol to 3-hydroxypropionic acid[J]. Biotechnology and Bioprocess Engineering, 2016, 21(4): 523-530. |
| 42 | ZHAO Li, LIN Jinping, WANG Hualei, et al. Development of a two-step process for production of 3-hydroxypropionic acid from glycerol using Klebsiella pneumoniae and Gluconobacter oxydans [J]. Bioprocess and Biosystems Engineering, 2015, 38(12): 2487-2495. |
| 43 | Hyun Gyu LIM, LEE Ji Hoon, Myung Hyun NOH, et al. Rediscovering acetate metabolism: Its potential sources and utilization for biobased transformation into value-added chemicals[J]. Journal of Agricultural and Food Chemistry, 2018, 66(16): 3998-4006. |
| 44 | NGHIEM Long D, KOCH Konrad, BOLZONELLA David, et al. Full scale co-digestion of wastewater sludge and food waste: Bottlenecks and possibilities[J]. Renewable and Sustainable Energy Reviews, 2017, 72: 354-362. |
| 45 | 陈佳妮. 变废为宝: 利用活性污泥生产生物可降解塑料聚-3-羟基丁酸酯[J]. 生物工程学报, 2017, 33(12): 1934-1944. |
| CHEN Jiani. From waste to treasure: Turning activated sludge into bioplastic poly-3-hydroxybutyrate[J]. Chinese Journal of Biotechnology, 2017, 33(12): 1934-1944. | |
| 46 | GLEIZER Shmuel, Roee BEN-NISSAN, BAR-ON Yinon M, et al. Conversion of Escherichia coli to generate all biomass carbon from CO2 [J]. Cell, 2019, 179(6): 1255-1263. |
| 47 | Víctor GUADALUPE-MEDINA, WOUTER WISSELINK H, LUTTIK Marijke Ah, et al. Carbon dioxide fixation by Calvin-cycle enzymes improves ethanol yield in yeast[J]. Biotechnology for Biofuels, 2013, 6(1): 125. |
| 48 | GASSLER Thomas, BAUMSCHABL Michael, SALLABERGER Jakob, et al. Adaptive laboratory evolution and reverse engineering enhances autotrophic growth in Pichia pastoris [J]. Metabolic Engineering, 2022, 69: 112-121. |
| 49 | QIN Ning, LI Lingyun, WAN Xiaozhen, et al. Increased CO2 fixation enables high carbon-yield production of 3-hydroxypropionic acid in yeast[J]. Nature Communications, 2024, 15(1): 1591. |
| 50 | FAULKNER Matthew, HOEVEN Robin, KELLY Paul P, et al. Chemoautotrophic production of gaseous hydrocarbons, bioplastics and osmolytes by a novel Halomonas species[J]. Biotechnology for Biofuels and Bioproducts, 2023, 16(1): 152. |
| [1] | SONG Xingfei, JIA Xin, AN Ping, HAN Zhennan, XU Guangwen. Development of science and technology in thermochemical reaction engineering [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3513-3533. |
| [2] | LYU Qingyan, GAO Hanwen, XIE Kunyu, FAN Dongqing, HUANG Long, CHEN Zhiqiang. Current situation and challenges of mixed culture polyhydroxyalkanoate (PHA) production using waste organics [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3374-3385. |
| [3] | HAN Wei, HAN Hengwen, CHENG Wei, TANG Weijian. Research progress of biomass fuels technology driven by carbon neutrality [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2463-2474. |
| [4] | HUANG Sheng, YANG Zhenli, LI Zhenyu. Analysis of optimization path of developing China's hydrogen industry [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 882-893. |
| [5] | SHAO Bin, LI Su, MA Rongting, XIE Zhicheng, GAO Zihao, JIA Zhonghao, WANG Wenhui, SUN Zheyi, HU Jun. Catalytic hydrogenation of carbonate minerals: A promising pathway to carbon neutrality for industries with intensive carbon emissions [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 5995-6009. |
| [6] | HAN Hengwen, HAN Wei, CHENG Wei. Development trend of synthetic fuel technology driven by carbon neutrality [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5457-5466. |
| [7] | CHEN Chongming, ZENG Siming, LUO Xiaona, SONG Guosheng, HAN Zhongge, YU Jinxing, SUN Nannan. Preparation and performance of carbon supported potassium-based CO2 adsorbent derived from hyper-cross linked polymers [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1540-1550. |
| [8] | WANG Chenxiang, QIN Yongli, JIANG Yongrong, GE Shijia, ZHENG Guoquan, SUN Zhenju. Enrichment of PHAs-producing bacteria by granular sludge in ABR acidogenic sulfate-reducing phase [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6658-6665. |
| [9] | YAO Lun, ZHOU Yongjin. Progress in microbial utilization of one-carbon feedstocks for biomanufacturing [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 16-29. |
| [10] | HU Bing, XU Lijun, HE Shan, SU Xin, WANG Jiwei. Researching progress of hydrogen production by PEM water electrolysis under the goal of carbon peak and carbon neutrality [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4595-4604. |
| [11] | ZHOU Ying, ZHOU Hongjun, XU Chunming. Exploration of the development path for the hydrogen energy [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4587-4592. |
| [12] | YANG Xueping. Exploration on technical path of modern coal chemical industry under the background of carbon neutralization [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3402-3412. |
| [13] | ZHOU Hongjun, ZHOU Ying, XU Chunming. Exploration of the CO2 conversion under China’s carbon neutrality goal [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3381-3385. |
| [14] | HUANG Sheng, WANG Jingyu, LI Zhenyu. Analysis of green and low-carbon development path of petroleum and chemical industry under the goal of carbon neutrality [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1689-1703. |
| [15] | XU Ming, SHAO Mingfei, LIU Qingya, DUAN Xue. Hydrogen generation from electrochemical water splitting coupling carbonate reduction [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1121-1124. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |